Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Precalculus
Find the roots of factored polynomials
Find (if possible) the rational zeros of the function.
\newline
(Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.)
\newline
f
(
x
)
=
4
x
3
−
34
x
2
+
80
x
−
32
f(x) = 4x^3 - 34x^2 + 80x - 32
f
(
x
)
=
4
x
3
−
34
x
2
+
80
x
−
32
Get tutor help
Perform the operation and reduce the answer fully. Make sure to express your answer as a simplified fraction.
\newline
1
10
÷
8
3
\frac{1}{10} \div \frac{8}{3}
10
1
÷
3
8
\newline
Answer:
Get tutor help
Perform the operation and reduce the answer fully. Make sure to express your answer as a simplified fraction.
\newline
2
3
÷
8
9
\frac{2}{3} \div \frac{8}{9}
3
2
÷
9
8
\newline
Answer:
Get tutor help
x
2
−
10
x
+
14
=
0
x^{2}-10x+14=0
x
2
−
10
x
+
14
=
0
\newline
One solution to the given equation can be written as
x
=
5
+
n
x=5+\sqrt{n}
x
=
5
+
n
, where
n
n
n
is a constant. What is the value of
n
n
n
?
Get tutor help
Find the sum of the first
7
7
7
terms of the following sequence. Round to the nearest hundredth if necessary.
\newline
125
,
100
,
80
,
…
125, \quad 100, \quad 80, \ldots
125
,
100
,
80
,
…
\newline
Sum of a finite geometric series:
\newline
S
n
=
a
1
−
a
1
r
n
1
−
r
S_{n}=\frac{a_{1}-a_{1} r^{n}}{1-r}
S
n
=
1
−
r
a
1
−
a
1
r
n
\newline
Answer:
Get tutor help
Find the sum of the first
7
7
7
terms of the following sequence. Round to the nearest hundredth if necessary.
\newline
27
,
−
54
,
108
,
…
27, \quad-54, \quad 108, \ldots
27
,
−
54
,
108
,
…
\newline
Sum of a finite geometric series:
\newline
S
n
=
a
1
−
a
1
r
n
1
−
r
S_{n}=\frac{a_{1}-a_{1} r^{n}}{1-r}
S
n
=
1
−
r
a
1
−
a
1
r
n
\newline
Answer:
Get tutor help
Evaluate:
\newline
∑
n
=
0
2
(
x
+
n
)
\sum_{n=0}^{2}(x+n)
n
=
0
∑
2
(
x
+
n
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
0
92
(
6
n
+
3
)
\sum_{n=0}^{92}(6 n+3)
n
=
0
∑
92
(
6
n
+
3
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
6
94
(
5
n
+
7
)
\sum_{n=6}^{94}(5 n+7)
n
=
6
∑
94
(
5
n
+
7
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
0
95
(
5
n
+
7
)
\sum_{n=0}^{95}(5 n+7)
n
=
0
∑
95
(
5
n
+
7
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
2
61
(
5
n
+
9
)
\sum_{n=2}^{61}(5 n+9)
n
=
2
∑
61
(
5
n
+
9
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
0
93
(
3
n
+
10
)
\sum_{n=0}^{93}(3 n+10)
n
=
0
∑
93
(
3
n
+
10
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
0
68
(
6
n
+
3
)
\sum_{n=0}^{68}(6 n+3)
n
=
0
∑
68
(
6
n
+
3
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
1
95
(
2
n
+
1
)
\sum_{n=1}^{95}(2 n+1)
n
=
1
∑
95
(
2
n
+
1
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
1
93
(
4
n
+
3
)
\sum_{n=1}^{93}(4 n+3)
n
=
1
∑
93
(
4
n
+
3
)
\newline
Answer:
Get tutor help
If
a
1
=
2
,
a
2
=
0
a_{1}=2, a_{2}=0
a
1
=
2
,
a
2
=
0
and
a
n
=
a
n
−
1
−
a
n
−
2
a_{n}=a_{n-1}-a_{n-2}
a
n
=
a
n
−
1
−
a
n
−
2
then find the value of
a
4
a_{4}
a
4
.
\newline
Answer:
Get tutor help
If
a
1
=
2
,
a
2
=
0
a_{1}=2, a_{2}=0
a
1
=
2
,
a
2
=
0
and
a
n
=
3
a
n
−
1
+
3
a
n
−
2
a_{n}=3 a_{n-1}+3 a_{n-2}
a
n
=
3
a
n
−
1
+
3
a
n
−
2
then find the value of
a
4
a_{4}
a
4
.
\newline
Answer:
Get tutor help
If
a
1
=
3
,
a
2
=
2
a_{1}=3, a_{2}=2
a
1
=
3
,
a
2
=
2
and
a
n
=
a
n
−
1
+
2
a
n
−
2
a_{n}=a_{n-1}+2 a_{n-2}
a
n
=
a
n
−
1
+
2
a
n
−
2
then find the value of
a
5
a_{5}
a
5
.
\newline
Answer:
Get tutor help
If
a
1
=
2
,
a
2
=
0
a_{1}=2, a_{2}=0
a
1
=
2
,
a
2
=
0
and
a
n
=
3
a
n
−
1
−
3
a
n
−
2
a_{n}=3 a_{n-1}-3 a_{n-2}
a
n
=
3
a
n
−
1
−
3
a
n
−
2
then find the value of
a
5
a_{5}
a
5
.
\newline
Answer:
Get tutor help
If
a
1
=
3
,
a
2
=
5
a_{1}=3, a_{2}=5
a
1
=
3
,
a
2
=
5
and
a
n
=
2
a
n
−
1
+
2
a
n
−
2
a_{n}=2 a_{n-1}+2 a_{n-2}
a
n
=
2
a
n
−
1
+
2
a
n
−
2
then find the value of
a
5
a_{5}
a
5
.
\newline
Answer:
Get tutor help
If
a
1
=
0
,
a
2
=
1
a_{1}=0, a_{2}=1
a
1
=
0
,
a
2
=
1
and
a
n
=
3
a
n
−
1
+
3
a
n
−
2
a_{n}=3 a_{n-1}+3 a_{n-2}
a
n
=
3
a
n
−
1
+
3
a
n
−
2
then find the value of
a
6
a_{6}
a
6
.
\newline
Answer:
Get tutor help
If
a
1
=
3
,
a
2
=
0
a_{1}=3, a_{2}=0
a
1
=
3
,
a
2
=
0
and
a
n
=
3
a
n
−
1
+
3
a
n
−
2
a_{n}=3 a_{n-1}+3 a_{n-2}
a
n
=
3
a
n
−
1
+
3
a
n
−
2
then find the value of
a
5
a_{5}
a
5
.
\newline
Answer:
Get tutor help
If
a
1
=
1
,
a
2
=
3
a_{1}=1, a_{2}=3
a
1
=
1
,
a
2
=
3
and
a
n
=
a
n
−
1
+
a
n
−
2
a_{n}=a_{n-1}+a_{n-2}
a
n
=
a
n
−
1
+
a
n
−
2
then find the value of
a
4
a_{4}
a
4
.
\newline
Answer:
Get tutor help
If
f
(
1
)
=
0
,
f
(
2
)
=
3
f(1)=0, f(2)=3
f
(
1
)
=
0
,
f
(
2
)
=
3
and
f
(
n
)
=
3
f
(
n
−
1
)
−
2
f
(
n
−
2
)
f(n)=3 f(n-1)-2 f(n-2)
f
(
n
)
=
3
f
(
n
−
1
)
−
2
f
(
n
−
2
)
then find the value of
f
(
5
)
f(5)
f
(
5
)
.
\newline
Answer:
Get tutor help
If
f
(
1
)
=
1
,
f
(
2
)
=
0
f(1)=1, f(2)=0
f
(
1
)
=
1
,
f
(
2
)
=
0
and
f
(
n
)
=
f
(
n
−
1
)
+
2
f
(
n
−
2
)
f(n)=f(n-1)+2 f(n-2)
f
(
n
)
=
f
(
n
−
1
)
+
2
f
(
n
−
2
)
then find the value of
f
(
4
)
f(4)
f
(
4
)
.
\newline
Answer:
Get tutor help
If
f
(
1
)
=
1
,
f
(
2
)
=
3
f(1)=1, f(2)=3
f
(
1
)
=
1
,
f
(
2
)
=
3
and
f
(
n
)
=
3
f
(
n
−
1
)
−
2
f
(
n
−
2
)
f(n)=3 f(n-1)-2 f(n-2)
f
(
n
)
=
3
f
(
n
−
1
)
−
2
f
(
n
−
2
)
then find the value of
f
(
5
)
f(5)
f
(
5
)
.
\newline
Answer:
Get tutor help
If
f
(
1
)
=
5
,
f
(
2
)
=
0
f(1)=5, f(2)=0
f
(
1
)
=
5
,
f
(
2
)
=
0
and
f
(
n
)
=
3
f
(
n
−
1
)
−
3
f
(
n
−
2
)
f(n)=3 f(n-1)-3 f(n-2)
f
(
n
)
=
3
f
(
n
−
1
)
−
3
f
(
n
−
2
)
then find the value of
f
(
4
)
f(4)
f
(
4
)
.
\newline
Answer:
Get tutor help
If
f
(
1
)
=
2
,
f
(
2
)
=
1
f(1)=2, f(2)=1
f
(
1
)
=
2
,
f
(
2
)
=
1
and
f
(
n
)
=
3
f
(
n
−
1
)
+
f
(
n
−
2
)
f(n)=3 f(n-1)+f(n-2)
f
(
n
)
=
3
f
(
n
−
1
)
+
f
(
n
−
2
)
then find the value of
f
(
6
)
f(6)
f
(
6
)
.
\newline
Answer:
Get tutor help
If
f
(
1
)
=
5
,
f
(
2
)
=
2
f(1)=5, f(2)=2
f
(
1
)
=
5
,
f
(
2
)
=
2
and
f
(
n
)
=
3
f
(
n
−
1
)
−
3
f
(
n
−
2
)
f(n)=3 f(n-1)-3 f(n-2)
f
(
n
)
=
3
f
(
n
−
1
)
−
3
f
(
n
−
2
)
then find the value of
f
(
6
)
f(6)
f
(
6
)
.
\newline
Answer:
Get tutor help
If
f
(
1
)
=
0
,
f
(
2
)
=
1
f(1)=0, f(2)=1
f
(
1
)
=
0
,
f
(
2
)
=
1
and
f
(
n
)
=
3
f
(
n
−
1
)
+
3
f
(
n
−
2
)
f(n)=3 f(n-1)+3 f(n-2)
f
(
n
)
=
3
f
(
n
−
1
)
+
3
f
(
n
−
2
)
then find the value of
f
(
6
)
f(6)
f
(
6
)
.
\newline
Answer:
Get tutor help
If
f
(
1
)
=
5
,
f
(
2
)
=
2
f(1)=5, f(2)=2
f
(
1
)
=
5
,
f
(
2
)
=
2
and
f
(
n
)
=
3
f
(
n
−
1
)
+
3
f
(
n
−
2
)
f(n)=3 f(n-1)+3 f(n-2)
f
(
n
)
=
3
f
(
n
−
1
)
+
3
f
(
n
−
2
)
then find the value of
f
(
4
)
f(4)
f
(
4
)
.
\newline
Answer:
Get tutor help
If
f
(
1
)
=
1
f(1)=1
f
(
1
)
=
1
and
f
(
n
+
1
)
=
f
(
n
)
2
−
2
f(n+1)=f(n)^{2}-2
f
(
n
+
1
)
=
f
(
n
)
2
−
2
then find the value of
f
(
4
)
f(4)
f
(
4
)
.
\newline
Answer:
Get tutor help
If
f
(
1
)
=
2
f(1)=2
f
(
1
)
=
2
and
f
(
n
+
1
)
=
f
(
n
)
2
−
2
f(n+1)=f(n)^{2}-2
f
(
n
+
1
)
=
f
(
n
)
2
−
2
then find the value of
f
(
3
)
f(3)
f
(
3
)
.
\newline
Answer:
Get tutor help
If
f
(
1
)
=
2
f(1)=2
f
(
1
)
=
2
and
f
(
n
+
1
)
=
f
(
n
)
2
−
5
f(n+1)=f(n)^{2}-5
f
(
n
+
1
)
=
f
(
n
)
2
−
5
then find the value of
f
(
4
)
f(4)
f
(
4
)
.
\newline
Answer:
Get tutor help
If
f
(
1
)
=
2
f(1)=2
f
(
1
)
=
2
and
f
(
n
+
1
)
=
f
(
n
)
2
−
3
f(n+1)=f(n)^{2}-3
f
(
n
+
1
)
=
f
(
n
)
2
−
3
then find the value of
f
(
3
)
f(3)
f
(
3
)
.
\newline
Answer:
Get tutor help
If
f
(
1
)
=
2
f(1)=2
f
(
1
)
=
2
and
f
(
n
+
1
)
=
f
(
n
)
2
−
3
f(n+1)=f(n)^{2}-3
f
(
n
+
1
)
=
f
(
n
)
2
−
3
then find the value of
f
(
4
)
f(4)
f
(
4
)
.
\newline
Answer:
Get tutor help
If
f
(
1
)
=
1
,
f
(
2
)
=
0
f(1)=1, f(2)=0
f
(
1
)
=
1
,
f
(
2
)
=
0
and
f
(
n
)
=
2
f
(
n
−
1
)
−
3
f
(
n
−
2
)
f(n)=2 f(n-1)-3 f(n-2)
f
(
n
)
=
2
f
(
n
−
1
)
−
3
f
(
n
−
2
)
then find the value of
f
(
4
)
f(4)
f
(
4
)
.
\newline
Answer:
Get tutor help
If
f
(
1
)
=
1
,
f
(
2
)
=
3
f(1)=1, f(2)=3
f
(
1
)
=
1
,
f
(
2
)
=
3
and
f
(
n
)
=
f
(
n
−
1
)
+
3
f
(
n
−
2
)
f(n)=f(n-1)+3 f(n-2)
f
(
n
)
=
f
(
n
−
1
)
+
3
f
(
n
−
2
)
then find the value of
f
(
4
)
f(4)
f
(
4
)
.
\newline
Answer:
Get tutor help
Given that
f
(
x
)
=
x
+
3
,
g
(
x
)
=
−
4
x
f(x)=x+3, \quad g(x)=-4 x
f
(
x
)
=
x
+
3
,
g
(
x
)
=
−
4
x
and
h
(
x
)
=
−
3
f
(
x
)
+
3
g
(
x
+
1
)
h(x)=-3 f(x)+3 g(x+1)
h
(
x
)
=
−
3
f
(
x
)
+
3
g
(
x
+
1
)
, then what is the value of
h
(
6
)
h(6)
h
(
6
)
?
\newline
Answer:
Get tutor help
Given that
f
(
x
)
=
x
−
4
,
g
(
x
)
=
−
3
x
f(x)=x-4, \quad g(x)=-3 x
f
(
x
)
=
x
−
4
,
g
(
x
)
=
−
3
x
and
h
(
x
)
=
−
f
(
x
)
+
2
g
(
x
−
1
)
h(x)=-f(x)+2 g(x-1)
h
(
x
)
=
−
f
(
x
)
+
2
g
(
x
−
1
)
, then what is the value of
h
(
7
)
h(7)
h
(
7
)
?
\newline
Answer:
Get tutor help
Given that
f
(
x
)
=
x
−
1
,
g
(
x
)
=
−
2
x
f(x)=x-1, \quad g(x)=-2 x
f
(
x
)
=
x
−
1
,
g
(
x
)
=
−
2
x
and
h
(
x
)
=
−
3
f
(
x
)
+
g
(
x
−
3
)
h(x)=-3 f(x)+g(x-3)
h
(
x
)
=
−
3
f
(
x
)
+
g
(
x
−
3
)
, then what is the value of
h
(
5
)
h(5)
h
(
5
)
?
\newline
Answer:
Get tutor help
Find the
5
th
5^{\text {th }}
5
th
term of the arithmetic sequence
−
4
x
−
8
,
2
x
−
13
,
8
x
−
18
,
…
-4 x-8,2 x-13,8 x-18, \ldots
−
4
x
−
8
,
2
x
−
13
,
8
x
−
18
,
…
\newline
Answer:
Get tutor help
Find the real zeros of the quadratic function using any method you wish. What are the x-intercepts, if any, of the graph of the function?
\newline
f
(
x
)
=
x
2
−
50
f(x)=x^{2}-50
f
(
x
)
=
x
2
−
50
Get tutor help
Solve the equation by factoring:
\newline
2
x
3
−
6
x
2
−
20
x
=
0
2 x^{3}-6 x^{2}-20 x=0
2
x
3
−
6
x
2
−
20
x
=
0
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve the equation by factoring:
\newline
36
x
2
−
160
x
−
2
x
3
=
0
36 x^{2}-160 x-2 x^{3}=0
36
x
2
−
160
x
−
2
x
3
=
0
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve the equation by factoring:
\newline
16
x
2
−
30
x
−
2
x
3
=
0
16 x^{2}-30 x-2 x^{3}=0
16
x
2
−
30
x
−
2
x
3
=
0
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve the equation by factoring:
\newline
2
x
3
+
12
x
2
−
32
x
=
0
2 x^{3}+12 x^{2}-32 x=0
2
x
3
+
12
x
2
−
32
x
=
0
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve the equation by factoring:
\newline
2
x
3
+
14
x
2
−
36
x
=
0
2 x^{3}+14 x^{2}-36 x=0
2
x
3
+
14
x
2
−
36
x
=
0
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve the equation by factoring:
\newline
60
x
−
24
x
2
−
3
x
3
=
0
60 x-24 x^{2}-3 x^{3}=0
60
x
−
24
x
2
−
3
x
3
=
0
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
.
\newline
1
5
−
5
x
=
−
8
5
x
\frac{1}{5}-\frac{5}{x}=\frac{-8}{5 x}
5
1
−
x
5
=
5
x
−
8
\newline
Answer:
x
=
x=
x
=
Get tutor help
Previous
1
2
3
...
6
Next