Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=1,f(2)=3 and 
f(n)=f(n-1)+3f(n-2) then find the value of 
f(4).
Answer:

If f(1)=1,f(2)=3 f(1)=1, f(2)=3 and f(n)=f(n1)+3f(n2) f(n)=f(n-1)+3 f(n-2) then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=1,f(2)=3 f(1)=1, f(2)=3 and f(n)=f(n1)+3f(n2) f(n)=f(n-1)+3 f(n-2) then find the value of f(4) f(4) .\newlineAnswer:
  1. Calculate f(3)f(3): To find f(4)f(4), we need to use the recursive formula f(n)=f(n1)+3f(n2)f(n)=f(n-1)+3f(n-2). We already know f(1)f(1) and f(2)f(2), so we can find f(3)f(3) first.\newlineCalculation: f(3)=f(31)+3f(32)=f(2)+3f(1)=3+3(1)=3+3=6f(3) = f(3-1) + 3f(3-2) = f(2) + 3f(1) = 3 + 3(1) = 3 + 3 = 6.
  2. Calculate f(4)f(4): Now that we have f(3)f(3), we can find f(4)f(4) using the same recursive formula.\newlineCalculation: f(4)=f(41)+3f(42)=f(3)+3f(2)=6+3(3)=6+9=15f(4) = f(4-1) + 3f(4-2) = f(3) + 3f(2) = 6 + 3(3) = 6 + 9 = 15.

More problems from Find the roots of factored polynomials