Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=2 and 
f(n+1)=f(n)^(2)-2 then find the value of 
f(3).
Answer:

If f(1)=2 f(1)=2 and f(n+1)=f(n)22 f(n+1)=f(n)^{2}-2 then find the value of f(3) f(3) .\newlineAnswer:

Full solution

Q. If f(1)=2 f(1)=2 and f(n+1)=f(n)22 f(n+1)=f(n)^{2}-2 then find the value of f(3) f(3) .\newlineAnswer:
  1. Given f(1)=2f(1) = 2: We are given that f(1)=2f(1) = 2. To find f(3)f(3), we need to find f(2)f(2) first, using the recursive formula f(n+1)=f(n)22f(n+1) = f(n)^{2} - 2.\newlineLet's calculate f(2)f(2) using f(1)f(1):\newlinef(2)=f(1)22=222=42=2f(2) = f(1)^{2} - 2 = 2^2 - 2 = 4 - 2 = 2.
  2. Calculate f(2)f(2): Now that we have f(2)f(2), we can use it to find f(3)f(3) using the same recursive formula: f(3)=f(2)22=222=42=2f(3) = f(2)^{2} - 2 = 2^{2} - 2 = 4 - 2 = 2.

More problems from Find the roots of factored polynomials