Q. If a1=0,a2=1 and an=3an−1+3an−2 then find the value of a6.Answer:
Initialize Sequence Values: To find the value of a6, we need to use the given recursive formula an=3an−1+3an−2 and the initial conditions a1=0 and a2=1 to calculate the sequence values up to n=6.
Calculate a3: First, we calculate a3 using the recursive formula:a3=3a2+3a1=3×1+3×0=3+0=3.
Calculate a4: Next, we calculate a4:a4=3a3+3a2=3×3+3×1=9+3=12.
Calculate a5: Then, we calculate a5:a5=3a4+3a3=3×12+3×3=36+9=45.
Calculate a6: Finally, we calculate a6:a6=3a5+3a4=3×45+3×12=135+36=171.
More problems from Find the roots of factored polynomials