Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=0,a_(2)=1 and 
a_(n)=3a_(n-1)+3a_(n-2) then find the value of 
a_(6).
Answer:

If a1=0,a2=1 a_{1}=0, a_{2}=1 and an=3an1+3an2 a_{n}=3 a_{n-1}+3 a_{n-2} then find the value of a6 a_{6} .\newlineAnswer:

Full solution

Q. If a1=0,a2=1 a_{1}=0, a_{2}=1 and an=3an1+3an2 a_{n}=3 a_{n-1}+3 a_{n-2} then find the value of a6 a_{6} .\newlineAnswer:
  1. Initialize Sequence Values: To find the value of a6a_{6}, we need to use the given recursive formula an=3an1+3an2a_{n}=3a_{n-1}+3a_{n-2} and the initial conditions a1=0a_{1}=0 and a2=1a_{2}=1 to calculate the sequence values up to n=6n=6.
  2. Calculate a3a_{3}: First, we calculate a3a_{3} using the recursive formula:\newlinea3=3a2+3a1=3×1+3×0=3+0=3a_{3} = 3a_{2} + 3a_{1} = 3\times 1 + 3\times 0 = 3 + 0 = 3.
  3. Calculate a4a_{4}: Next, we calculate a4a_{4}:a4=3a3+3a2=3×3+3×1=9+3=12a_{4} = 3a_{3} + 3a_{2} = 3\times3 + 3\times1 = 9 + 3 = 12.
  4. Calculate a5a_{5}: Then, we calculate a5a_{5}:a5=3a4+3a3=3×12+3×3=36+9=45a_{5} = 3a_{4} + 3a_{3} = 3\times12 + 3\times3 = 36 + 9 = 45.
  5. Calculate a6a_{6}: Finally, we calculate a6a_{6}:a6=3a5+3a4=3×45+3×12=135+36=171a_{6} = 3a_{5} + 3a_{4} = 3\times45 + 3\times12 = 135 + 36 = 171.

More problems from Find the roots of factored polynomials