Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=5,f(2)=0 and 
f(n)=3f(n-1)-3f(n-2) then find the value of 
f(4).
Answer:

If f(1)=5,f(2)=0 f(1)=5, f(2)=0 and f(n)=3f(n1)3f(n2) f(n)=3 f(n-1)-3 f(n-2) then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=5,f(2)=0 f(1)=5, f(2)=0 and f(n)=3f(n1)3f(n2) f(n)=3 f(n-1)-3 f(n-2) then find the value of f(4) f(4) .\newlineAnswer:
  1. Calculate f(3)f(3): To find f(4)f(4), we need to use the recursive formula f(n)=3f(n1)3f(n2)f(n)=3f(n-1)-3f(n-2) and the given values f(1)=5f(1)=5 and f(2)=0f(2)=0. Let's start by finding f(3)f(3).
  2. Find f(4)f(4): Using the recursive formula, we calculate f(3)f(3) as follows:\newlinef(3)=3f(2)3f(1)f(3) = 3f(2) - 3f(1)\newlinef(3)=3(0)3(5)f(3) = 3(0) - 3(5)\newlinef(3)=015f(3) = 0 - 15\newlinef(3)=15f(3) = -15
  3. Use Recursive Formula: Now that we have f(3)f(3), we can use it along with f(2)f(2) to find f(4)f(4) using the same recursive formula:\newlinef(4)=3f(3)3f(2)f(4) = 3f(3) - 3f(2)\newlinef(4)=3(15)3(0)f(4) = 3(-15) - 3(0)\newlinef(4)=450f(4) = -45 - 0\newlinef(4)=45f(4) = -45

More problems from Find the roots of factored polynomials