Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
If
a
1
=
3
,
a
2
=
0
a_{1}=3, a_{2}=0
a
1
=
3
,
a
2
=
0
and
a
n
=
3
a
n
−
1
+
3
a
n
−
2
a_{n}=3 a_{n-1}+3 a_{n-2}
a
n
=
3
a
n
−
1
+
3
a
n
−
2
then find the value of
a
5
a_{5}
a
5
.
\newline
Answer:
View step-by-step help
Home
Math Problems
Precalculus
Find the roots of factored polynomials
Full solution
Q.
If
a
1
=
3
,
a
2
=
0
a_{1}=3, a_{2}=0
a
1
=
3
,
a
2
=
0
and
a
n
=
3
a
n
−
1
+
3
a
n
−
2
a_{n}=3 a_{n-1}+3 a_{n-2}
a
n
=
3
a
n
−
1
+
3
a
n
−
2
then find the value of
a
5
a_{5}
a
5
.
\newline
Answer:
Initialize Recursive Formula:
To find
a
5
a_{5}
a
5
, we need to use the recursive formula
a
n
=
3
a
n
−
1
+
3
a
n
−
2
a_{n}=3a_{n-1}+3a_{n-2}
a
n
=
3
a
n
−
1
+
3
a
n
−
2
to find the values of
a
3
a_{3}
a
3
and
a
4
a_{4}
a
4
first.
Calculate
a
3
a_{3}
a
3
:
Using the given values, let's calculate
a
3
a_{3}
a
3
:
a
3
=
3
a
2
+
3
a
1
=
3
×
0
+
3
×
3
=
0
+
9
=
9
a_{3} = 3a_{2} + 3a_{1} = 3\times 0 + 3\times 3 = 0 + 9 = 9
a
3
=
3
a
2
+
3
a
1
=
3
×
0
+
3
×
3
=
0
+
9
=
9
.
Calculate
a
4
a_{4}
a
4
:
Now, let's calculate
a
4
a_{4}
a
4
using the values of
a
3
a_{3}
a
3
and
a
2
a_{2}
a
2
:
a
4
=
3
a
3
+
3
a
2
=
3
×
9
+
3
×
0
=
27
+
0
=
27
a_{4} = 3a_{3} + 3a_{2} = 3\times9 + 3\times0 = 27 + 0 = 27
a
4
=
3
a
3
+
3
a
2
=
3
×
9
+
3
×
0
=
27
+
0
=
27
.
Find
a
5
a_{5}
a
5
:
Finally, we can find
a
5
a_{5}
a
5
using the values of
a
4
a_{4}
a
4
and
a
3
a_{3}
a
3
:
a
5
=
3
a
4
+
3
a
3
=
3
×
27
+
3
×
9
=
81
+
27
=
108
a_{5} = 3a_{4} + 3a_{3} = 3\times27 + 3\times9 = 81 + 27 = 108
a
5
=
3
a
4
+
3
a
3
=
3
×
27
+
3
×
9
=
81
+
27
=
108
.
More problems from Find the roots of factored polynomials
Question
Find the degree of this polynomial.
\newline
`5b^{10} + 3b^3`
\newline
_______
Get tutor help
Posted 5 months ago
Question
Subtract.
\newline
(
9
a
+
5
)
−
(
2
a
+
4
)
(9a + 5) - (2a + 4)
(
9
a
+
5
)
−
(
2
a
+
4
)
\newline
____
Get tutor help
Posted 5 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
v
2
(
v
2
−
9
)
-3v^2(v^2 - 9)
−
3
v
2
(
v
2
−
9
)
\newline
________
Get tutor help
Posted 5 months ago
Question
Find the product. Simplify your answer.
\newline
(
v
−
3
)
(
4
v
+
1
)
(v - 3)(4v + 1)
(
v
−
3
)
(
4
v
+
1
)
\newline
______
Get tutor help
Posted 5 months ago
Question
Find the square. Simplify your answer.
\newline
(
3
y
+
2
)
2
(3y + 2)^2
(
3
y
+
2
)
2
\newline
______
Get tutor help
Posted 5 months ago
Question
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
24
t
2
+
36
t
)
÷
6
t
(24t^2 + 36t) \div 6t
(
24
t
2
+
36
t
)
÷
6
t
\newline
______
Get tutor help
Posted 5 months ago
Question
Is the function
q
(
x
)
=
x
6
−
9
q(x) = x^6 - 9
q
(
x
)
=
x
6
−
9
even, odd, or neither?
\newline
Choices:
\newline
[[even][odd][neither]]
\text{[[even][odd][neither]]}
[[even][odd][neither]]
Get tutor help
Posted 9 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
q
2
(
−
3
q
2
+
q
)
-3q^2(-3q^2 + q)
−
3
q
2
(
−
3
q
2
+
q
)
\newline
______
Get tutor help
Posted 9 months ago
Question
Find the product. Simplify your answer.
\newline
(
r
+
3
)
(
4
r
+
2
)
(r + 3)(4r + 2)
(
r
+
3
)
(
4
r
+
2
)
\newline
______
Get tutor help
Posted 9 months ago
Question
Find the roots of the factored polynomial.
\newline
(
x
+
7
)
(
x
+
4
)
(x + 7)(x + 4)
(
x
+
7
)
(
x
+
4
)
\newline
Write your answer as a list of values separated by commas.
\newline
x
=
x =
x
=
____
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant