Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=3,a_(2)=0 and 
a_(n)=3a_(n-1)+3a_(n-2) then find the value of 
a_(5).
Answer:

If a1=3,a2=0 a_{1}=3, a_{2}=0 and an=3an1+3an2 a_{n}=3 a_{n-1}+3 a_{n-2} then find the value of a5 a_{5} .\newlineAnswer:

Full solution

Q. If a1=3,a2=0 a_{1}=3, a_{2}=0 and an=3an1+3an2 a_{n}=3 a_{n-1}+3 a_{n-2} then find the value of a5 a_{5} .\newlineAnswer:
  1. Initialize Recursive Formula: To find a5a_{5}, we need to use the recursive formula an=3an1+3an2a_{n}=3a_{n-1}+3a_{n-2} to find the values of a3a_{3} and a4a_{4} first.
  2. Calculate a3a_{3}: Using the given values, let's calculate a3a_{3}:a3=3a2+3a1=3×0+3×3=0+9=9a_{3} = 3a_{2} + 3a_{1} = 3\times 0 + 3\times 3 = 0 + 9 = 9.
  3. Calculate a4a_{4}: Now, let's calculate a4a_{4} using the values of a3a_{3} and a2a_{2}:a4=3a3+3a2=3×9+3×0=27+0=27a_{4} = 3a_{3} + 3a_{2} = 3\times9 + 3\times0 = 27 + 0 = 27.
  4. Find a5a_{5}: Finally, we can find a5a_{5} using the values of a4a_{4} and a3a_{3}:a5=3a4+3a3=3×27+3×9=81+27=108a_{5} = 3a_{4} + 3a_{3} = 3\times27 + 3\times9 = 81 + 27 = 108.

More problems from Find the roots of factored polynomials