Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the sum of the first 7 terms of the following sequence. Round to the nearest hundredth if necessary.

27,quad-54,quad108,dots
Sum of a finite geometric series:

S_(n)=(a_(1)-a_(1)r^(n))/(1-r)
Answer:

Find the sum of the first 77 terms of the following sequence. Round to the nearest hundredth if necessary.\newline27,54,108, 27, \quad-54, \quad 108, \ldots \newlineSum of a finite geometric series:\newlineSn=a1a1rn1r S_{n}=\frac{a_{1}-a_{1} r^{n}}{1-r} \newlineAnswer:

Full solution

Q. Find the sum of the first 77 terms of the following sequence. Round to the nearest hundredth if necessary.\newline27,54,108, 27, \quad-54, \quad 108, \ldots \newlineSum of a finite geometric series:\newlineSn=a1a1rn1r S_{n}=\frac{a_{1}-a_{1} r^{n}}{1-r} \newlineAnswer:
  1. Identify first term: Identify the first term a1a_1 of the geometric sequence.\newlineThe first term a1a_1 is 2727.
  2. Determine common ratio: Determine the common ratio rr of the sequence.\newlineTo find the common ratio, divide the second term by the first term: r=5427=2r = \frac{-54}{27} = -2.
  3. Use sum formula: Use the formula for the sum of the first nn terms of a geometric series: Sn=a1(1rn)1rS_n = \frac{a_1(1 - r^n)}{1 - r}, where nn is the number of terms.\newlineWe need to find the sum of the first 77 terms, so n=7n = 7.
  4. Substitute values: Substitute the values of a1a_1, rr, and nn into the formula.\newlineS7=27(1(2)7)1(2)S_7 = \frac{27(1 - (-2)^7)}{1 - (-2)}
  5. Calculate (2)7(-2)^7: Calculate the value of (2)7.(-2)^7.\newline(2)7=128.(-2)^7 = -128.
  6. Simplify expression: Substitute the value of (2)7(-2)^7 into the formula.\newlineS7=27(1(128))1(2)S_7 = \frac{27(1 - (-128))}{1 - (-2)}
  7. Substitute simplified expression: Simplify the expression inside the parentheses.\newline1(128)=1+128=1291 - (-128) = 1 + 128 = 129.
  8. Simplify denominator: Substitute the simplified expression into the formula. S7=27×1291+2S_7 = \frac{27 \times 129}{1 + 2}
  9. Calculate sum: Simplify the denominator. 1+2=31 + 2 = 3.
  10. Calculate sum: Simplify the denominator.\newline1+2=31 + 2 = 3.Calculate the sum S7S_7.\newlineS7=(27×129)/3S_7 = (27 \times 129) / 3\newlineS7=3483/3S_7 = 3483 / 3\newlineS7=1161S_7 = 1161

More problems from Find the roots of factored polynomials