Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=1,f(2)=3 and 
f(n)=3f(n-1)-2f(n-2) then find the value of 
f(5).
Answer:

If f(1)=1,f(2)=3 f(1)=1, f(2)=3 and f(n)=3f(n1)2f(n2) f(n)=3 f(n-1)-2 f(n-2) then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=1,f(2)=3 f(1)=1, f(2)=3 and f(n)=3f(n1)2f(n2) f(n)=3 f(n-1)-2 f(n-2) then find the value of f(5) f(5) .\newlineAnswer:
  1. Calculate f(3)f(3): To find f(5)f(5), we need to use the recursive formula f(n)=3f(n1)2f(n2)f(n)=3f(n-1)-2f(n-2) to find the values of f(3)f(3), f(4)f(4), and then f(5)f(5). We already know f(1)f(1) and f(2)f(2), so we can start by finding f(3)f(3).\newlineCalculation: f(3)=3f(2)2f(1)=3×32×1=92=7f(3) = 3f(2) - 2f(1) = 3\times3 - 2\times1 = 9 - 2 = 7.
  2. Calculate f(4)f(4): Now that we have f(3)f(3), we can find f(4)f(4) using the same recursive formula.\newlineCalculation: f(4)=3f(3)2f(2)=3×72×3=216=15f(4) = 3f(3) - 2f(2) = 3\times7 - 2\times3 = 21 - 6 = 15.
  3. Calculate f(5)f(5): Finally, we can find f(5)f(5) using the values of f(4)f(4) and f(3)f(3).\newlineCalculation: f(5)=3f(4)2f(3)=3×152×7=4514=31f(5) = 3f(4) - 2f(3) = 3\times15 - 2\times7 = 45 - 14 = 31.

More problems from Find the roots of factored polynomials