Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=2,f(2)=1 and 
f(n)=3f(n-1)+f(n-2) then find the value of 
f(6).
Answer:

If f(1)=2,f(2)=1 f(1)=2, f(2)=1 and f(n)=3f(n1)+f(n2) f(n)=3 f(n-1)+f(n-2) then find the value of f(6) f(6) .\newlineAnswer:

Full solution

Q. If f(1)=2,f(2)=1 f(1)=2, f(2)=1 and f(n)=3f(n1)+f(n2) f(n)=3 f(n-1)+f(n-2) then find the value of f(6) f(6) .\newlineAnswer:
  1. Initialize Recursive Formula: To find the value of f(6)f(6), we need to use the recursive formula f(n)=3f(n1)+f(n2)f(n) = 3f(n-1) + f(n-2) and the initial conditions f(1)=2f(1) = 2 and f(2)=1f(2) = 1. We will calculate the values of f(3)f(3), f(4)f(4), f(5)f(5), and then f(6)f(6) step by step.
  2. Calculate f(3)f(3): First, we find f(3)f(3) using the recursive formula:\newlinef(3)=3f(2)+f(1)=3(1)+2=3+2=5.f(3) = 3f(2) + f(1) = 3(1) + 2 = 3 + 2 = 5.\newlineSo, f(3)=5.f(3) = 5.
  3. Calculate f(4)f(4): Next, we find f(4)f(4) using the recursive formula:\newlinef(4)=3f(3)+f(2)=3(5)+1=15+1=16.f(4) = 3f(3) + f(2) = 3(5) + 1 = 15 + 1 = 16.\newlineSo, f(4)=16.f(4) = 16.
  4. Calculate f(5)f(5): Then, we find f(5)f(5) using the recursive formula:\newlinef(5)=3f(4)+f(3)=3(16)+5=48+5=53.f(5) = 3f(4) + f(3) = 3(16) + 5 = 48 + 5 = 53.\newlineSo, f(5)=53.f(5) = 53.
  5. Calculate f(6)f(6): Finally, we find f(6)f(6) using the recursive formula:\newlinef(6)=3f(5)+f(4)=3(53)+16=159+16=175.f(6) = 3f(5) + f(4) = 3(53) + 16 = 159 + 16 = 175.\newlineSo, f(6)=175.f(6) = 175.

More problems from Find the roots of factored polynomials