Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=2 and 
f(n+1)=f(n)^(2)-3 then find the value of 
f(4).
Answer:

If f(1)=2 f(1)=2 and f(n+1)=f(n)23 f(n+1)=f(n)^{2}-3 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=2 f(1)=2 and f(n+1)=f(n)23 f(n+1)=f(n)^{2}-3 then find the value of f(4) f(4) .\newlineAnswer:
  1. Initial Condition Calculation: We are given the initial condition f(1)=2f(1) = 2. We need to use the recursive formula f(n+1)=f(n)23f(n+1) = f(n)^{2} - 3 to find f(2)f(2).\newlineCalculation: f(2)=f(1)23=223=43=1f(2) = f(1)^{2} - 3 = 2^2 - 3 = 4 - 3 = 1.
  2. Finding f(3)f(3): Now that we have f(2)f(2), we can find f(3)f(3) using the same recursive formula.\newlineCalculation: f(3)=f(2)23=123=13=2f(3) = f(2)^{2} - 3 = 1^{2} - 3 = 1 - 3 = -2.
  3. Finding f(4)f(4): Finally, we use f(3)f(3) to find f(4)f(4).\newlineCalculation: f(4)=f(3)23=(2)23=43=1f(4) = f(3)^{2} - 3 = (-2)^{2} - 3 = 4 - 3 = 1.

More problems from Find the roots of factored polynomials