Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=0,f(2)=3 and 
f(n)=3f(n-1)-2f(n-2) then find the value of 
f(5).
Answer:

If f(1)=0,f(2)=3 f(1)=0, f(2)=3 and f(n)=3f(n1)2f(n2) f(n)=3 f(n-1)-2 f(n-2) then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=0,f(2)=3 f(1)=0, f(2)=3 and f(n)=3f(n1)2f(n2) f(n)=3 f(n-1)-2 f(n-2) then find the value of f(5) f(5) .\newlineAnswer:
  1. Calculate f(3)f(3): To find f(5)f(5), we need to use the recursive formula f(n)=3f(n1)2f(n2)f(n)=3f(n-1)-2f(n-2) to find the values of f(3)f(3) and f(4)f(4) first, since we already know f(1)f(1) and f(2)f(2).
  2. Calculate f(4)f(4): Let's calculate f(3)f(3) using the given formula: f(3)=3f(31)2f(32)f(3)=3f(3-1)-2f(3-2) which simplifies to f(3)=3f(2)2f(1)f(3)=3f(2)-2f(1).
  3. Calculate f(5)f(5): Substitute the known values f(2)=3f(2)=3 and f(1)=0f(1)=0 into the formula to get f(3)=3×32×0f(3)=3\times 3-2\times 0 which simplifies to f(3)=9f(3)=9.
  4. Calculate f(5)f(5): Substitute the known values f(2)=3f(2)=3 and f(1)=0f(1)=0 into the formula to get f(3)=3×32×0f(3)=3\times 3-2\times 0 which simplifies to f(3)=9f(3)=9.Now let's calculate f(4)f(4) using the formula: f(4)=3f(41)2f(42)f(4)=3f(4-1)-2f(4-2) which simplifies to f(4)=3f(3)2f(2)f(4)=3f(3)-2f(2).
  5. Calculate f(5)f(5): Substitute the known values f(2)=3f(2)=3 and f(1)=0f(1)=0 into the formula to get f(3)=3×32×0f(3)=3\times 3-2\times 0 which simplifies to f(3)=9f(3)=9.Now let's calculate f(4)f(4) using the formula: f(4)=3f(41)2f(42)f(4)=3f(4-1)-2f(4-2) which simplifies to f(4)=3f(3)2f(2)f(4)=3f(3)-2f(2).Substitute the known values f(3)=9f(3)=9 and f(2)=3f(2)=3 into the formula to get f(2)=3f(2)=300 which simplifies to f(2)=3f(2)=311, so f(2)=3f(2)=322.
  6. Calculate f(5)f(5): Substitute the known values f(2)=3f(2)=3 and f(1)=0f(1)=0 into the formula to get f(3)=3×32×0f(3)=3\times 3-2\times 0 which simplifies to f(3)=9f(3)=9.Now let's calculate f(4)f(4) using the formula: f(4)=3f(41)2f(42)f(4)=3f(4-1)-2f(4-2) which simplifies to f(4)=3f(3)2f(2)f(4)=3f(3)-2f(2).Substitute the known values f(3)=9f(3)=9 and f(2)=3f(2)=3 into the formula to get f(2)=3f(2)=300 which simplifies to f(2)=3f(2)=311, so f(2)=3f(2)=322.Finally, we calculate f(5)f(5) using the formula: f(2)=3f(2)=344 which simplifies to f(2)=3f(2)=355.
  7. Calculate f(5)f(5): Substitute the known values f(2)=3f(2)=3 and f(1)=0f(1)=0 into the formula to get f(3)=3×32×0f(3)=3\times 3-2\times 0 which simplifies to f(3)=9f(3)=9.Now let's calculate f(4)f(4) using the formula: f(4)=3f(41)2f(42)f(4)=3f(4-1)-2f(4-2) which simplifies to f(4)=3f(3)2f(2)f(4)=3f(3)-2f(2).Substitute the known values f(3)=9f(3)=9 and f(2)=3f(2)=3 into the formula to get f(2)=3f(2)=300 which simplifies to f(2)=3f(2)=311, so f(2)=3f(2)=322.Finally, we calculate f(5)f(5) using the formula: f(2)=3f(2)=344 which simplifies to f(2)=3f(2)=355.Substitute the known values f(2)=3f(2)=322 and f(3)=9f(3)=9 into the formula to get f(2)=3f(2)=388 which simplifies to f(2)=3f(2)=399, so f(1)=0f(1)=000.

More problems from Find the roots of factored polynomials