Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=1 and 
f(n+1)=f(n)^(2)-2 then find the value of 
f(4).
Answer:

If f(1)=1 f(1)=1 and f(n+1)=f(n)22 f(n+1)=f(n)^{2}-2 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=1 f(1)=1 and f(n+1)=f(n)22 f(n+1)=f(n)^{2}-2 then find the value of f(4) f(4) .\newlineAnswer:
  1. Given f(1)f(1): We are given that f(1)=1f(1) = 1. To find f(4)f(4), we need to find the values of f(2)f(2), f(3)f(3), and then f(4)f(4) using the recursive formula f(n+1)=f(n)22f(n+1) = f(n)^{2} - 2.
  2. Find f(2)f(2): First, let's find f(2)f(2). We use the given formula with n=1n=1:f(2)=f(1)22=122=12=1.f(2) = f(1)^{2} - 2 = 1^2 - 2 = 1 - 2 = -1.
  3. Find f(3)f(3): Next, we find f(3)f(3) using the value of f(2)f(2):f(3)=f(2)22=(1)22=12=1f(3) = f(2)^{2} - 2 = (-1)^{2} - 2 = 1 - 2 = -1.
  4. Find f(4)f(4): Finally, we find f(4)f(4) using the value of f(3)f(3):f(4)=f(3)22=(1)22=12=1f(4) = f(3)^{2} - 2 = (-1)^2 - 2 = 1 - 2 = -1.

More problems from Find the roots of factored polynomials