Q. If f(1)=1 and f(n+1)=f(n)2−2 then find the value of f(4).Answer:
Given f(1): We are given that f(1)=1. To find f(4), we need to find the values of f(2), f(3), and then f(4) using the recursive formula f(n+1)=f(n)2−2.
Find f(2): First, let's find f(2). We use the given formula with n=1:f(2)=f(1)2−2=12−2=1−2=−1.
Find f(3): Next, we find f(3) using the value of f(2):f(3)=f(2)2−2=(−1)2−2=1−2=−1.
Find f(4): Finally, we find f(4) using the value of f(3):f(4)=f(3)2−2=(−1)2−2=1−2=−1.
More problems from Find the roots of factored polynomials