Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=2,a_(2)=0 and 
a_(n)=a_(n-1)-a_(n-2) then find the value of 
a_(4).
Answer:

If a1=2,a2=0 a_{1}=2, a_{2}=0 and an=an1an2 a_{n}=a_{n-1}-a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=2,a2=0 a_{1}=2, a_{2}=0 and an=an1an2 a_{n}=a_{n-1}-a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:
  1. Calculate a3a_{3}: To find the value of a4a_{4}, we need to use the recursive formula an=an1an2a_{n}=a_{n-1}-a_{n-2}. We already know a1a_{1} and a2a_{2}, so we can calculate a3a_{3} first.\newlinea3=a2a1=02=2a_{3} = a_{2} - a_{1} = 0 - 2 = -2.
  2. Calculate a4a_{4}: Now that we have a3a_{3}, we can use it along with a2a_{2} to find a4a_{4}.\newlinea4=a3a2=20=2a_{4} = a_{3} - a_{2} = -2 - 0 = -2.

More problems from Find the roots of factored polynomials