Q. If a1=2,a2=0 and an=3an−1−3an−2 then find the value of a5.Answer:
Initialize Values: To find the value of a5, we need to use the recursive formula an=3an−1−3an−2 and the initial values a1=2 and a2=0. We will calculate the values of a3, a4, and then a5 in sequence.
Calculate a3: First, let's find a3 using the recursive formula. We have a3=3a2−3a1. Substituting the known values, we get a3=3×0−3×2.
Calculate a4: Calculating a3, we get a3=0−6=−6.
Calculate a5: Next, we find a4 using the recursive formula. We have a4=3a3−3a2. Substituting the known values, we get $a_{\(4\)}=\(3\)*(\(-6\))\(-3\)*\(0\).
Final Result: Calculating \(a_{4}\), we get \(a_{4}=-18-0=-18\).
Final Result: Calculating \(a_{4}\), we get \(a_{4}=-18-0=-18\). Finally, we find \(a_{5}\) using the recursive formula. We have \(a_{5}=3a_{4}-3a_{3}\). Substituting the known values, we get \(a_{5}=3*(-18)-3*(-6)\).
Final Result: Calculating \(a_{4}\), we get \(a_{4}=-18-0=-18\). Finally, we find \(a_{5}\) using the recursive formula. We have \(a_{5}=3a_{4}-3a_{3}\). Substituting the known values, we get \(a_{5}=3*(-18)-3*(-6)\). Calculating \(a_{5}\), we get \(a_{5}=-54+18=-36\).
More problems from Find the roots of factored polynomials