Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=2,a_(2)=0 and 
a_(n)=3a_(n-1)+3a_(n-2) then find the value of 
a_(4).
Answer:

If a1=2,a2=0 a_{1}=2, a_{2}=0 and an=3an1+3an2 a_{n}=3 a_{n-1}+3 a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=2,a2=0 a_{1}=2, a_{2}=0 and an=3an1+3an2 a_{n}=3 a_{n-1}+3 a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:
  1. Calculate a3a_{3}: To find the value of a4a_{4}, we need to use the recursive formula an=3an1+3an2a_{n}=3a_{n-1}+3a_{n-2} and the given initial conditions a1=2a_{1}=2 and a2=0a_{2}=0. We will start by finding a3a_{3}.
  2. Find a4a_{4}: Using the recursive formula, we calculate a3a_{3} as follows:\newlinea3=3a2+3a1a_{3} = 3a_{2} + 3a_{1}\newlinea3=3(0)+3(2)a_{3} = 3(0) + 3(2)\newlinea3=0+6a_{3} = 0 + 6\newlinea3=6a_{3} = 6
  3. Find a4a_{4}: Using the recursive formula, we calculate a3a_{3} as follows:\newlinea3=3a2+3a1a_{3} = 3a_{2} + 3a_{1}\newlinea3=3(0)+3(2)a_{3} = 3(0) + 3(2)\newlinea3=0+6a_{3} = 0 + 6\newlinea3=6a_{3} = 6Now that we have a3a_{3}, we can use it along with a2a_{2} to find a4a_{4} using the same recursive formula:\newlinea4=3a3+3a2a_{4} = 3a_{3} + 3a_{2}\newlinea3a_{3}00\newlinea3a_{3}11\newlinea3a_{3}22

More problems from Find the roots of factored polynomials