Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=0,f(2)=1 and 
f(n)=3f(n-1)+3f(n-2) then find the value of 
f(6).
Answer:

If f(1)=0,f(2)=1 f(1)=0, f(2)=1 and f(n)=3f(n1)+3f(n2) f(n)=3 f(n-1)+3 f(n-2) then find the value of f(6) f(6) .\newlineAnswer:

Full solution

Q. If f(1)=0,f(2)=1 f(1)=0, f(2)=1 and f(n)=3f(n1)+3f(n2) f(n)=3 f(n-1)+3 f(n-2) then find the value of f(6) f(6) .\newlineAnswer:
  1. Given initial conditions: We are given the initial conditions f(1)=0f(1) = 0 and f(2)=1f(2) = 1. We need to use the recursive formula f(n)=3f(n1)+3f(n2)f(n) = 3f(n-1) + 3f(n-2) to find f(3)f(3).
  2. Calculate f(3)f(3): Using the recursive formula, we calculate f(3)=3f(2)+3f(1)=3×1+3×0=3f(3) = 3f(2) + 3f(1) = 3\times1 + 3\times0 = 3.
  3. Find f(4)f(4): Next, we find f(4)f(4) using the recursive formula: f(4)=3f(3)+3f(2)=3×3+3×1=9+3=12f(4) = 3f(3) + 3f(2) = 3\times3 + 3\times1 = 9 + 3 = 12.
  4. Continue with f(5)f(5): We continue with the recursive formula to find f(5)f(5): f(5)=3f(4)+3f(3)=3×12+3×3=36+9=45f(5) = 3f(4) + 3f(3) = 3\times12 + 3\times3 = 36 + 9 = 45.
  5. Use recursive formula for f(6)f(6): Finally, we use the recursive formula to find f(6)f(6): f(6)=3f(5)+3f(4)=3×45+3×12=135+36=171f(6) = 3f(5) + 3f(4) = 3\times45 + 3\times12 = 135 + 36 = 171.

More problems from Find the roots of factored polynomials