Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=1,f(2)=0 and 
f(n)=f(n-1)+2f(n-2) then find the value of 
f(4).
Answer:

If f(1)=1,f(2)=0 f(1)=1, f(2)=0 and f(n)=f(n1)+2f(n2) f(n)=f(n-1)+2 f(n-2) then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=1,f(2)=0 f(1)=1, f(2)=0 and f(n)=f(n1)+2f(n2) f(n)=f(n-1)+2 f(n-2) then find the value of f(4) f(4) .\newlineAnswer:
  1. Calculate f(3)f(3): To find f(4)f(4), we need to first find f(3)f(3) using the given recursive formula f(n)=f(n1)+2f(n2)f(n)=f(n-1)+2f(n-2). We know f(2)=0f(2)=0 and f(1)=1f(1)=1, so we can calculate f(3)f(3) as follows: f(3)=f(31)+2f(32)f(3) = f(3-1) + 2f(3-2) =f(2)+2f(1)= f(2) + 2f(1) =0+2(1)= 0 + 2(1) =2= 2
  2. Find f(4)f(4): Now that we have f(3)f(3), we can use it to find f(4)f(4) using the same recursive formula:\newlinef(4)=f(41)+2f(42)f(4) = f(4-1) + 2f(4-2)\newline=f(3)+2f(2)= f(3) + 2f(2)\newline=2+2(0)= 2 + 2(0)\newline=2= 2

More problems from Find the roots of factored polynomials