Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
f(x)=x-1,quad g(x)=-2x and 
h(x)=-3f(x)+g(x-3), then what is the value of 
h(5) ?
Answer:

Given that f(x)=x1,g(x)=2x f(x)=x-1, \quad g(x)=-2 x and h(x)=3f(x)+g(x3) h(x)=-3 f(x)+g(x-3) , then what is the value of h(5) h(5) ?\newlineAnswer:

Full solution

Q. Given that f(x)=x1,g(x)=2x f(x)=x-1, \quad g(x)=-2 x and h(x)=3f(x)+g(x3) h(x)=-3 f(x)+g(x-3) , then what is the value of h(5) h(5) ?\newlineAnswer:
  1. Find f(5)f(5): First, we need to find the value of f(5)f(5) since h(x)h(x) involves f(x)f(x).
    f(x)=x1f(x) = x - 1
    f(5)=51=4f(5) = 5 - 1 = 4
  2. Find g(2)g(2): Next, we need to find the value of g(x3)g(x-3). Since we are evaluating h(5)h(5), we need to find g(53)g(5-3).\newlineg(x)=2xg(x) = -2x\newlineg(53)=g(2)=2×2=4g(5-3) = g(2) = -2 \times 2 = -4
  3. Calculate h(5)h(5): Now, we can use the values of f(5)f(5) and g(2)g(2) to find h(5)h(5).
    h(x)=3f(x)+g(x3)h(x) = -3f(x) + g(x-3)
    h(5)=3f(5)+g(2)h(5) = -3f(5) + g(2)
    h(5)=3×4+(4)h(5) = -3 \times 4 + (-4)
    h(5)=124h(5) = -12 - 4
    h(5)=16h(5) = -16

More problems from Find the roots of factored polynomials