Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=5,f(2)=2 and 
f(n)=3f(n-1)+3f(n-2) then find the value of 
f(4).
Answer:

If f(1)=5,f(2)=2 f(1)=5, f(2)=2 and f(n)=3f(n1)+3f(n2) f(n)=3 f(n-1)+3 f(n-2) then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=5,f(2)=2 f(1)=5, f(2)=2 and f(n)=3f(n1)+3f(n2) f(n)=3 f(n-1)+3 f(n-2) then find the value of f(4) f(4) .\newlineAnswer:
  1. Given Recursive Formula: We are given the recursive formula f(n)=3f(n1)+3f(n2)f(n) = 3f(n-1) + 3f(n-2), and the initial conditions f(1)=5f(1) = 5 and f(2)=2f(2) = 2. To find f(4)f(4), we first need to find f(3)f(3) using the recursive formula.
  2. Calculate f(3)f(3): Using the recursive formula, we calculate f(3)f(3) as follows:\newlinef(3)=3f(2)+3f(1)f(3) = 3f(2) + 3f(1)\newlinef(3)=3(2)+3(5)f(3) = 3(2) + 3(5)\newlinef(3)=6+15f(3) = 6 + 15\newlinef(3)=21f(3) = 21\newlineNow we have the value of f(3)f(3).
  3. Find f(4)f(4): Next, we use the values of f(2)f(2) and f(3)f(3) to find f(4)f(4) using the same recursive formula:\newlinef(4)=3f(3)+3f(2)f(4) = 3f(3) + 3f(2)\newlinef(4)=3(21)+3(2)f(4) = 3(21) + 3(2)\newlinef(4)=63+6f(4) = 63 + 6\newlinef(4)=69f(4) = 69\newlineWe have now found the value of f(4)f(4).

More problems from Find the roots of factored polynomials