Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=3,a_(2)=2 and 
a_(n)=a_(n-1)+2a_(n-2) then find the value of 
a_(5).
Answer:

If a1=3,a2=2 a_{1}=3, a_{2}=2 and an=an1+2an2 a_{n}=a_{n-1}+2 a_{n-2} then find the value of a5 a_{5} .\newlineAnswer:

Full solution

Q. If a1=3,a2=2 a_{1}=3, a_{2}=2 and an=an1+2an2 a_{n}=a_{n-1}+2 a_{n-2} then find the value of a5 a_{5} .\newlineAnswer:
  1. Initialize Recursive Formula: To find a5a_{5}, we need to use the recursive formula an=an1+2an2a_{n}=a_{n-1}+2a_{n-2} to find the values of a3a_{3}, a4a_{4}, and then a5a_{5}. We already know a1=3a_{1}=3 and a2=2a_{2}=2.
  2. Calculate a3a_{3}: Let's calculate a3a_{3} using the recursive formula: a3=a31+2a32a_{3}=a_{3-1}+2a_{3-2} which simplifies to a3=a2+2a1a_{3}=a_{2}+2a_{1}.
  3. Calculate a4a_{4}: Substitute the known values into the formula: a3=2+2×3a_{3}=2+2\times 3 which simplifies to a3=2+6a_{3}=2+6.
  4. Calculate a5a_{5}: Calculate the value of a3a_{3}: a3=8a_{3}=8.
  5. Calculate a5a_{5}: Calculate the value of a3a_{3}: a3=8a_{3}=8.Now let's calculate a4a_{4} using the recursive formula: a4=a41+2a42a_{4}=a_{4-1}+2a_{4-2} which simplifies to a4=a3+2a2a_{4}=a_{3}+2a_{2}.
  6. Calculate a5a_{5}: Calculate the value of a3a_{3}: a3=8a_{3}=8.Now let's calculate a4a_{4} using the recursive formula: a4=a41+2a42a_{4}=a_{4-1}+2a_{4-2} which simplifies to a4=a3+2a2a_{4}=a_{3}+2a_{2}.Substitute the known values into the formula: a4=8+2×2a_{4}=8+2\times 2 which simplifies to a4=8+4a_{4}=8+4.
  7. Calculate a5a_{5}: Calculate the value of a3a_{3}: a3=8a_{3}=8.Now let's calculate a4a_{4} using the recursive formula: a4=a41+2a42a_{4}=a_{4-1}+2a_{4-2} which simplifies to a4=a3+2a2a_{4}=a_{3}+2a_{2}.Substitute the known values into the formula: a4=8+2×2a_{4}=8+2\times 2 which simplifies to a4=8+4a_{4}=8+4.Calculate the value of a4a_{4}: a4=12a_{4}=12.
  8. Calculate a5a_{5}: Calculate the value of a3a_{3}: a3=8a_{3}=8.Now let's calculate a4a_{4} using the recursive formula: a4=a41+2a42a_{4}=a_{4-1}+2a_{4-2} which simplifies to a4=a3+2a2a_{4}=a_{3}+2a_{2}.Substitute the known values into the formula: a4=8+2×2a_{4}=8+2\times 2 which simplifies to a4=8+4a_{4}=8+4.Calculate the value of a4a_{4}: a4=12a_{4}=12.Finally, let's calculate a5a_{5} using the recursive formula: a3a_{3}11 which simplifies to a3a_{3}22.
  9. Calculate a5a_{5}: Calculate the value of a3a_{3}: a3=8a_{3}=8.Now let's calculate a4a_{4} using the recursive formula: a4=a41+2a42a_{4}=a_{4-1}+2a_{4-2} which simplifies to a4=a3+2a2a_{4}=a_{3}+2a_{2}.Substitute the known values into the formula: a4=8+2×2a_{4}=8+2\times 2 which simplifies to a4=8+4a_{4}=8+4.Calculate the value of a4a_{4}: a4=12a_{4}=12.Finally, let's calculate a5a_{5} using the recursive formula: a3a_{3}11 which simplifies to a3a_{3}22.Substitute the known values into the formula: a3a_{3}33 which simplifies to a3a_{3}44.
  10. Calculate a5a_{5}: Calculate the value of a3a_{3}: a3=8a_{3}=8.Now let's calculate a4a_{4} using the recursive formula: a4=a41+2a42a_{4}=a_{4-1}+2a_{4-2} which simplifies to a4=a3+2a2a_{4}=a_{3}+2a_{2}.Substitute the known values into the formula: a4=8+2×2a_{4}=8+2\times 2 which simplifies to a4=8+4a_{4}=8+4.Calculate the value of a4a_{4}: a4=12a_{4}=12.Finally, let's calculate a5a_{5} using the recursive formula: a3a_{3}11 which simplifies to a3a_{3}22.Substitute the known values into the formula: a3a_{3}33 which simplifies to a3a_{3}44.Calculate the value of a5a_{5}: a3a_{3}66.

More problems from Find the roots of factored polynomials