Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=1,a_(2)=3 and 
a_(n)=a_(n-1)+a_(n-2) then find the value of 
a_(4).
Answer:

If a1=1,a2=3 a_{1}=1, a_{2}=3 and an=an1+an2 a_{n}=a_{n-1}+a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=1,a2=3 a_{1}=1, a_{2}=3 and an=an1+an2 a_{n}=a_{n-1}+a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:
  1. Find a3a_{3}: To find a4a_{4}, we need to first find a3a_{3} using the recursive formula an=an1+an2a_{n}=a_{n-1}+a_{n-2}.\newlineWe know that a1=1a_{1}=1 and a2=3a_{2}=3.\newlineSo, a3=a2+a1=3+1=4a_{3}=a_{2}+a_{1}=3+1=4.
  2. Calculate a4a_{4}: Now that we have a3a_{3}, we can find a4a_{4} using the same recursive formula.a4=a3+a2=4+3=7.a_{4}=a_{3}+a_{2}=4+3=7.
  3. Verify solution: We have successfully calculated a4a_{4} without any mathematical errors.

More problems from Find the roots of factored polynomials