Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=1,f(2)=0 and 
f(n)=2f(n-1)-3f(n-2) then find the value of 
f(4).
Answer:

If f(1)=1,f(2)=0 f(1)=1, f(2)=0 and f(n)=2f(n1)3f(n2) f(n)=2 f(n-1)-3 f(n-2) then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=1,f(2)=0 f(1)=1, f(2)=0 and f(n)=2f(n1)3f(n2) f(n)=2 f(n-1)-3 f(n-2) then find the value of f(4) f(4) .\newlineAnswer:
  1. Calculate f(3)f(3): To find f(4)f(4), we need to first find f(3)f(3) using the given recursive formula f(n)=2f(n1)3f(n2)f(n)=2f(n-1)-3f(n-2). We know f(2)=0f(2)=0 and f(1)=1f(1)=1, so we can calculate f(3)f(3) as follows: f(3)=2f(31)3f(32)=2f(2)3f(1)=2×03×1=3f(3) = 2f(3-1) - 3f(3-2) = 2f(2) - 3f(1) = 2\times 0 - 3\times 1 = -3
  2. Calculate f(4)f(4): Now that we have f(3)f(3), we can use it to find f(4)f(4) using the same recursive formula:\newlinef(4)=2f(41)3f(42)f(4) = 2f(4-1) - 3f(4-2)\newline=2f(3)3f(2)= 2f(3) - 3f(2)\newline=2(3)30= 2*(-3) - 3*0\newline=60= -6 - 0\newline=6= -6

More problems from Find the roots of factored polynomials