Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=2 and 
f(n+1)=f(n)^(2)-5 then find the value of 
f(4).
Answer:

If f(1)=2 f(1)=2 and f(n+1)=f(n)25 f(n+1)=f(n)^{2}-5 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=2 f(1)=2 and f(n+1)=f(n)25 f(n+1)=f(n)^{2}-5 then find the value of f(4) f(4) .\newlineAnswer:
  1. Given f(1)f(1): We are given that f(1)=2f(1) = 2. To find f(4)f(4), we need to find the values of f(2)f(2), f(3)f(3), and then f(4)f(4) using the recursive formula f(n+1)=f(n)25f(n+1) = f(n)^{2} - 5.
  2. Find f(2)f(2): First, let's find f(2)f(2) using the given formula with n=1n = 1.
    f(2)=f(1)25=225=45=1f(2) = f(1)^{2} - 5 = 2^{2} - 5 = 4 - 5 = -1.
  3. Find f(3)f(3): Next, we find f(3)f(3) using the value of f(2)f(2).f(3)=f(2)25=(1)25=15=4f(3) = f(2)^{2} - 5 = (-1)^2 - 5 = 1 - 5 = -4.
  4. Find f(4)f(4): Finally, we find f(4)f(4) using the value of f(3)f(3).f(4)=f(3)25=(4)25=165=11f(4) = f(3)^{2} - 5 = (-4)^{2} - 5 = 16 - 5 = 11.

More problems from Find the roots of factored polynomials