Q. If f(1)=2 and f(n+1)=f(n)2−5 then find the value of f(4).Answer:
Given f(1): We are given that f(1)=2. To find f(4), we need to find the values of f(2), f(3), and then f(4) using the recursive formula f(n+1)=f(n)2−5.
Find f(2): First, let's find f(2) using the given formula with n=1. f(2)=f(1)2−5=22−5=4−5=−1.
Find f(3): Next, we find f(3) using the value of f(2).f(3)=f(2)2−5=(−1)2−5=1−5=−4.
Find f(4): Finally, we find f(4) using the value of f(3).f(4)=f(3)2−5=(−4)2−5=16−5=11.
More problems from Find the roots of factored polynomials