Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
If
a
1
=
3
,
a
2
=
5
a_{1}=3, a_{2}=5
a
1
=
3
,
a
2
=
5
and
a
n
=
2
a
n
−
1
+
2
a
n
−
2
a_{n}=2 a_{n-1}+2 a_{n-2}
a
n
=
2
a
n
−
1
+
2
a
n
−
2
then find the value of
a
5
a_{5}
a
5
.
\newline
Answer:
View step-by-step help
Home
Math Problems
Precalculus
Find the roots of factored polynomials
Full solution
Q.
If
a
1
=
3
,
a
2
=
5
a_{1}=3, a_{2}=5
a
1
=
3
,
a
2
=
5
and
a
n
=
2
a
n
−
1
+
2
a
n
−
2
a_{n}=2 a_{n-1}+2 a_{n-2}
a
n
=
2
a
n
−
1
+
2
a
n
−
2
then find the value of
a
5
a_{5}
a
5
.
\newline
Answer:
Calculate
a
3
a_{3}
a
3
:
To find
a
5
a_{5}
a
5
, we need to use the recursive formula
a
n
=
2
a
n
−
1
+
2
a
n
−
2
a_{n}=2a_{n-1}+2a_{n-2}
a
n
=
2
a
n
−
1
+
2
a
n
−
2
to find
a
3
a_{3}
a
3
and
a
4
a_{4}
a
4
first.
Calculate
a
4
a_{4}
a
4
:
Using the recursive formula, let's calculate
a
3
a_{3}
a
3
:
\newline
$a_{\(3\)} = \(2\)a_{\(2\)} + \(2\)a_{\(1\)} = \(2\)\times \(5\) + \(2\)\times \(3\) = \(10\) + \(6\) = \(16\).
Find \(a_{5}\):
Now, let's calculate \(a_{4}\) using the recursive formula:\(\newline\)\(a_{4} = 2a_{3} + 2a_{2} = 2\times16 + 2\times5 = 32 + 10 = 42\).
Find \(a_{5}\):
Now, let's calculate \(a_{4}\) using the recursive formula:\(\newline\)\(a_{4} = 2a_{3} + 2a_{2} = 2\times16 + 2\times5 = 32 + 10 = 42\).Finally, we can find \(a_{5}\) using the values of \(a_{3}\) and \(a_{4}\):\(\newline\)\(a_{5} = 2a_{4} + 2a_{3} = 2\times42 + 2\times16 = 84 + 32 = 116\).
More problems from Find the roots of factored polynomials
Question
Find the degree of this polynomial.
\newline
`5b^{10} + 3b^3`
\newline
_______
Get tutor help
Posted 5 months ago
Question
Subtract.
\newline
(
9
a
+
5
)
−
(
2
a
+
4
)
(9a + 5) - (2a + 4)
(
9
a
+
5
)
−
(
2
a
+
4
)
\newline
____
Get tutor help
Posted 5 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
v
2
(
v
2
−
9
)
-3v^2(v^2 - 9)
−
3
v
2
(
v
2
−
9
)
\newline
________
Get tutor help
Posted 5 months ago
Question
Find the product. Simplify your answer.
\newline
(
v
−
3
)
(
4
v
+
1
)
(v - 3)(4v + 1)
(
v
−
3
)
(
4
v
+
1
)
\newline
______
Get tutor help
Posted 5 months ago
Question
Find the square. Simplify your answer.
\newline
(
3
y
+
2
)
2
(3y + 2)^2
(
3
y
+
2
)
2
\newline
______
Get tutor help
Posted 5 months ago
Question
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
24
t
2
+
36
t
)
÷
6
t
(24t^2 + 36t) \div 6t
(
24
t
2
+
36
t
)
÷
6
t
\newline
______
Get tutor help
Posted 5 months ago
Question
Is the function
q
(
x
)
=
x
6
−
9
q(x) = x^6 - 9
q
(
x
)
=
x
6
−
9
even, odd, or neither?
\newline
Choices:
\newline
[[even][odd][neither]]
\text{[[even][odd][neither]]}
[[even][odd][neither]]
Get tutor help
Posted 9 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
q
2
(
−
3
q
2
+
q
)
-3q^2(-3q^2 + q)
−
3
q
2
(
−
3
q
2
+
q
)
\newline
______
Get tutor help
Posted 9 months ago
Question
Find the product. Simplify your answer.
\newline
(
r
+
3
)
(
4
r
+
2
)
(r + 3)(4r + 2)
(
r
+
3
)
(
4
r
+
2
)
\newline
______
Get tutor help
Posted 9 months ago
Question
Find the roots of the factored polynomial.
\newline
(
x
+
7
)
(
x
+
4
)
(x + 7)(x + 4)
(
x
+
7
)
(
x
+
4
)
\newline
Write your answer as a list of values separated by commas.
\newline
x
=
x =
x
=
____
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant