Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=3,a_(2)=5 and 
a_(n)=2a_(n-1)+2a_(n-2) then find the value of 
a_(5).
Answer:

If a1=3,a2=5 a_{1}=3, a_{2}=5 and an=2an1+2an2 a_{n}=2 a_{n-1}+2 a_{n-2} then find the value of a5 a_{5} .\newlineAnswer:

Full solution

Q. If a1=3,a2=5 a_{1}=3, a_{2}=5 and an=2an1+2an2 a_{n}=2 a_{n-1}+2 a_{n-2} then find the value of a5 a_{5} .\newlineAnswer:
  1. Calculate a3a_{3}: To find a5a_{5}, we need to use the recursive formula an=2an1+2an2a_{n}=2a_{n-1}+2a_{n-2} to find a3a_{3} and a4a_{4} first.
  2. Calculate a4a_{4}: Using the recursive formula, let's calculate a3a_{3}:\newline$a_{\(3\)} = \(2\)a_{\(2\)} + \(2\)a_{\(1\)} = \(2\)\times \(5\) + \(2\)\times \(3\) = \(10\) + \(6\) = \(16\).
  3. Find \(a_{5}\): Now, let's calculate \(a_{4}\) using the recursive formula:\(\newline\)\(a_{4} = 2a_{3} + 2a_{2} = 2\times16 + 2\times5 = 32 + 10 = 42\).
  4. Find \(a_{5}\): Now, let's calculate \(a_{4}\) using the recursive formula:\(\newline\)\(a_{4} = 2a_{3} + 2a_{2} = 2\times16 + 2\times5 = 32 + 10 = 42\).Finally, we can find \(a_{5}\) using the values of \(a_{3}\) and \(a_{4}\):\(\newline\)\(a_{5} = 2a_{4} + 2a_{3} = 2\times42 + 2\times16 = 84 + 32 = 116\).

More problems from Find the roots of factored polynomials