Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=2 and 
f(n+1)=f(n)^(2)-3 then find the value of 
f(3).
Answer:

If f(1)=2 f(1)=2 and f(n+1)=f(n)23 f(n+1)=f(n)^{2}-3 then find the value of f(3) f(3) .\newlineAnswer:

Full solution

Q. If f(1)=2 f(1)=2 and f(n+1)=f(n)23 f(n+1)=f(n)^{2}-3 then find the value of f(3) f(3) .\newlineAnswer:
  1. Given f(1)f(1): We are given that f(1)=2f(1) = 2. To find f(3)f(3), we need to find f(2)f(2) first, using the recursive formula f(n+1)=f(n)23f(n+1) = f(n)^{2} - 3.
  2. Find f(2)f(2): Using the recursive formula, we substitute n=1n = 1 to find f(2)f(2):f(2)=f(1)23=223=43=1f(2) = f(1)^{2} - 3 = 2^{2} - 3 = 4 - 3 = 1.
  3. Find f(3)f(3): Now that we have f(2)f(2), we can find f(3)f(3) by substituting n=2n = 2 into the recursive formula: f(3)=f(2)23=123=13=2.f(3) = f(2)^{2} - 3 = 1^{2} - 3 = 1 - 3 = -2.

More problems from Find the roots of factored polynomials