Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 2
Sum of finite series starts from 1
Evaluate the summation below.
\newline
4
∑
p
=
0
3
(
9
p
−
2
p
2
)
4 \sum_{p=0}^{3}\left(9 p-2 p^{2}\right)
4
p
=
0
∑
3
(
9
p
−
2
p
2
)
\newline
Answer:
Get tutor help
Evaluate the summation below.
\newline
5
∑
k
=
0
3
(
1
−
3
k
2
)
5 \sum_{k=0}^{3}\left(1-3 k^{2}\right)
5
k
=
0
∑
3
(
1
−
3
k
2
)
\newline
Answer:
Get tutor help
Evaluate the summation below.
\newline
7
∑
k
=
3
6
(
6
k
−
k
2
)
7 \sum_{k=3}^{6}\left(6 k-k^{2}\right)
7
k
=
3
∑
6
(
6
k
−
k
2
)
\newline
Answer:
Get tutor help
Evaluate the summation below.
\newline
∑
t
=
0
4
(
−
t
2
+
4
t
)
\sum_{t=0}^{4}\left(-t^{2}+4 t\right)
t
=
0
∑
4
(
−
t
2
+
4
t
)
\newline
Answer:
Get tutor help
Find the value of the following expression and round to the nearest integer:
\newline
∑
n
=
2
50
50
(
1.12
)
n
−
2
\sum_{n=2}^{50} 50(1.12)^{n-2}
n
=
2
∑
50
50
(
1.12
)
n
−
2
\newline
Answer:
Get tutor help
Evaluate:
\newline
∑
n
=
2
5
(
−
5
x
+
2
n
)
\sum_{n=2}^{5}(-5 x+2 n)
n
=
2
∑
5
(
−
5
x
+
2
n
)
\newline
Answer:
Get tutor help
Evaluate:
\newline
∑
n
=
0
2
(
−
4
x
−
3
n
)
\sum_{n=0}^{2}(-4 x-3 n)
n
=
0
∑
2
(
−
4
x
−
3
n
)
\newline
Answer:
Get tutor help
Evaluate:
\newline
∑
n
=
0
2
(
−
4
x
−
3
n
)
\sum_{n=0}^{2}(-4 x-3 n)
n
=
0
∑
2
(
−
4
x
−
3
n
)
\newline
Answer:
\newline
Submit Answer
Get tutor help
Evaluate:
\newline
∑
n
=
0
3
(
n
x
−
1
)
\sum_{n=0}^{3}(n x-1)
n
=
0
∑
3
(
n
x
−
1
)
\newline
Answer:
Get tutor help
Evaluate the summation below.
\newline
∑
i
=
0
4
(
−
7
+
7
i
)
\sum_{i=0}^{4}(-7+7 i)
i
=
0
∑
4
(
−
7
+
7
i
)
\newline
Answer:
Get tutor help
Evaluate the summation below.
\newline
∑
n
=
0
4
(
6
n
2
−
8
n
)
\sum_{n=0}^{4}\left(6 n^{2}-8 n\right)
n
=
0
∑
4
(
6
n
2
−
8
n
)
\newline
Answer:
Get tutor help
Evaluate the summation below.
\newline
3
∑
n
=
0
3
(
−
4
n
2
+
3
)
3 \sum_{n=0}^{3}\left(-4 n^{2}+3\right)
3
n
=
0
∑
3
(
−
4
n
2
+
3
)
\newline
Answer:
Get tutor help
Evaluate the summation below.
\newline
2
∑
i
=
0
3
(
3
i
−
3
i
2
)
2 \sum_{i=0}^{3}\left(3 i-3 i^{2}\right)
2
i
=
0
∑
3
(
3
i
−
3
i
2
)
\newline
Answer:
Get tutor help
Evaluate the summation below.
\newline
6
∑
p
=
0
3
(
−
p
2
+
2
p
)
6 \sum_{p=0}^{3}\left(-p^{2}+2 p\right)
6
p
=
0
∑
3
(
−
p
2
+
2
p
)
\newline
Answer:
Get tutor help
Evaluate the summation below.
\newline
5
∑
t
=
2
5
(
7
−
3
t
)
5 \sum_{t=2}^{5}(7-3 t)
5
t
=
2
∑
5
(
7
−
3
t
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
0
64
(
2
n
+
5
)
\sum_{n=0}^{64}(2 n+5)
n
=
0
∑
64
(
2
n
+
5
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
2
66
(
7
n
+
6
)
\sum_{n=2}^{66}(7 n+6)
n
=
2
∑
66
(
7
n
+
6
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
1
70
(
3
n
+
10
)
\sum_{n=1}^{70}(3 n+10)
n
=
1
∑
70
(
3
n
+
10
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
2
65
(
6
n
+
1
)
\sum_{n=2}^{65}(6 n+1)
n
=
2
∑
65
(
6
n
+
1
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
0
69
(
2
n
+
9
)
\sum_{n=0}^{69}(2 n+9)
n
=
0
∑
69
(
2
n
+
9
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
0
60
(
4
n
+
7
)
\sum_{n=0}^{60}(4 n+7)
n
=
0
∑
60
(
4
n
+
7
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
2
86
(
5
n
+
6
)
\sum_{n=2}^{86}(5 n+6)
n
=
2
∑
86
(
5
n
+
6
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
0
72
(
6
n
+
3
)
\sum_{n=0}^{72}(6 n+3)
n
=
0
∑
72
(
6
n
+
3
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
0
89
(
3
n
+
8
)
\sum_{n=0}^{89}(3 n+8)
n
=
0
∑
89
(
3
n
+
8
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
0
98
(
7
n
+
6
)
\sum_{n=0}^{98}(7 n+6)
n
=
0
∑
98
(
7
n
+
6
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
1
89
(
2
n
+
9
)
\sum_{n=1}^{89}(2 n+9)
n
=
1
∑
89
(
2
n
+
9
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
3
79
(
6
n
+
4
)
\sum_{n=3}^{79}(6 n+4)
n
=
3
∑
79
(
6
n
+
4
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
6
61
(
6
n
+
7
)
\sum_{n=6}^{61}(6 n+7)
n
=
6
∑
61
(
6
n
+
7
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
1
78
(
7
n
+
6
)
\sum_{n=1}^{78}(7 n+6)
n
=
1
∑
78
(
7
n
+
6
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
0
97
(
6
n
+
7
)
\sum_{n=0}^{97}(6 n+7)
n
=
0
∑
97
(
6
n
+
7
)
\newline
Answer:
Get tutor help
Find the value of the following expression and round to the nearest integer:
\newline
∑
n
=
0
77
60
(
0.98
)
n
+
1
\sum_{n=0}^{77} 60(0.98)^{n+1}
n
=
0
∑
77
60
(
0.98
)
n
+
1
\newline
Answer:
Get tutor help
Find the value of the following expression and round to the nearest integer:
\newline
∑
n
=
0
33
50
(
1.01
)
n
\sum_{n=0}^{33} 50(1.01)^{n}
n
=
0
∑
33
50
(
1.01
)
n
\newline
Answer:
Get tutor help
Find the value of the following expression and round to the nearest integer:
\newline
∑
n
=
1
20
600
(
0.91
)
n
+
1
\sum_{n=1}^{20} 600(0.91)^{n+1}
n
=
1
∑
20
600
(
0.91
)
n
+
1
\newline
Answer:
Get tutor help
Find the value of the following expression and round to the nearest integer:
\newline
∑
n
=
0
25
500
(
0.88
)
n
+
1
\sum_{n=0}^{25} 500(0.88)^{n+1}
n
=
0
∑
25
500
(
0.88
)
n
+
1
\newline
Answer:
Get tutor help
Find the value of the following expression and round to the nearest integer:
\newline
∑
n
=
2
57
20
(
1.15
)
n
−
2
\sum_{n=2}^{57} 20(1.15)^{n-2}
n
=
2
∑
57
20
(
1.15
)
n
−
2
\newline
Answer:
Get tutor help
Find the value of the following expression and round to the nearest integer:
\newline
∑
n
=
2
34
30
(
1.3
)
n
−
2
\sum_{n=2}^{34} 30(1.3)^{n-2}
n
=
2
∑
34
30
(
1.3
)
n
−
2
\newline
Answer:
Get tutor help
Find the value of the following expression and round to the nearest integer:
\newline
∑
n
=
0
28
200
(
1.19
)
n
+
1
\sum_{n=0}^{28} 200(1.19)^{n+1}
n
=
0
∑
28
200
(
1.19
)
n
+
1
\newline
Answer:
Get tutor help
Find the value of the following expression and round to the nearest integer:
\newline
∑
n
=
2
25
900
(
1.21
)
n
−
1
\sum_{n=2}^{25} 900(1.21)^{n-1}
n
=
2
∑
25
900
(
1.21
)
n
−
1
\newline
Answer:
Get tutor help
Find the value of the following expression and round to the nearest integer:
\newline
∑
n
=
0
98
100
(
1.01
)
n
\sum_{n=0}^{98} 100(1.01)^{n}
n
=
0
∑
98
100
(
1.01
)
n
\newline
Answer:
Get tutor help
Find the value of the following expression and round to the nearest integer:
\newline
∑
n
=
0
66
300
(
0.95
)
n
+
1
\sum_{n=0}^{66} 300(0.95)^{n+1}
n
=
0
∑
66
300
(
0.95
)
n
+
1
\newline
Answer:
Get tutor help
Find the value of the following expression and round to the nearest integer:
\newline
∑
n
=
0
25
100
(
1.24
)
n
+
1
\sum_{n=0}^{25} 100(1.24)^{n+1}
n
=
0
∑
25
100
(
1.24
)
n
+
1
\newline
Answer:
Get tutor help
Find the value of the following expression and round to the nearest integer:
\newline
∑
n
=
2
20
700
(
0.71
)
n
−
1
\sum_{n=2}^{20} 700(0.71)^{n-1}
n
=
2
∑
20
700
(
0.71
)
n
−
1
\newline
Answer:
Get tutor help
Find the value of the following expression and round to the nearest integer:
\newline
∑
n
=
1
36
700
(
0.98
)
n
\sum_{n=1}^{36} 700(0.98)^{n}
n
=
1
∑
36
700
(
0.98
)
n
\newline
Answer:
Get tutor help
Find the value of the following expression and round to the nearest integer:
\newline
∑
n
=
0
98
300
(
0.96
)
n
−
1
\sum_{n=0}^{98} 300(0.96)^{n-1}
n
=
0
∑
98
300
(
0.96
)
n
−
1
\newline
Answer:
Get tutor help
Find the value of the following expression and round to the nearest integer:
\newline
∑
n
=
0
24
200
(
1.22
)
n
\sum_{n=0}^{24} 200(1.22)^{n}
n
=
0
∑
24
200
(
1.22
)
n
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
0
85
(
2
n
+
5
)
\sum_{n=0}^{85}(2 n+5)
n
=
0
∑
85
(
2
n
+
5
)
\newline
Answer:
Get tutor help
Find the numerical answer to the summation given below.
\newline
∑
n
=
6
98
(
6
n
+
4
)
\sum_{n=6}^{98}(6 n+4)
n
=
6
∑
98
(
6
n
+
4
)
\newline
Answer:
Get tutor help
cot
(
2
θ
)
=
1
−
tan
2
θ
2
tan
θ
\cot(2\theta)=\frac{1-\tan^{2}\theta}{2\tan \theta}
cot
(
2
θ
)
=
2
t
a
n
θ
1
−
t
a
n
2
θ
Get tutor help
Simplify to create an equivalent expression.
\newline
19
−
6
(
−
k
+
4
)
19-6(-k+4)
19
−
6
(
−
k
+
4
)
\newline
Choose
1
1
1
answer:
\newline
(A)
6
k
−
5
6k-5
6
k
−
5
\newline
(B)
−
6
k
−
5
-6k-5
−
6
k
−
5
\newline
(C)
6
k
+
9
6k+9
6
k
+
9
\newline
(D)
6
k
+
5
6k+5
6
k
+
5
Get tutor help
Simplify the expression completely.
\newline
−
49
+
2
−
729
3
+
−
9
+
5
−
49
-\sqrt{49}+2 \sqrt[3]{-729}+\sqrt{-9}+5 \sqrt{-49}
−
49
+
2
3
−
729
+
−
9
+
5
−
49
\newline
Answer:
Get tutor help
Previous
1
2
3
Next