Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the value of the following expression and round to the nearest integer:

sum_(n=1)^(36)700(0.98)^(n)
Answer:

Find the value of the following expression and round to the nearest integer:\newlinen=136700(0.98)n \sum_{n=1}^{36} 700(0.98)^{n} \newlineAnswer:

Full solution

Q. Find the value of the following expression and round to the nearest integer:\newlinen=136700(0.98)n \sum_{n=1}^{36} 700(0.98)^{n} \newlineAnswer:
  1. Recognize Geometric Series: Recognize that the given expression is a geometric series. The general form of a geometric series is n=0arn\sum_{n=0}^{\infty} ar^n, where aa is the first term, rr is the common ratio, and nn is the term number. In this case, a=700a = 700 and r=0.98r = 0.98.
  2. Use Sum Formula: Use the formula for the sum of the first nn terms of a geometric series, which is Sn=a(1rn)1rS_n = \frac{a(1 - r^n)}{1 - r}, where SnS_n is the sum of the first nn terms.\newlineHere, n=36n = 36, a=700a = 700, and r=0.98r = 0.98. We will plug these values into the formula to find the sum.
  3. Calculate with Values: Calculate the sum using the formula.\newlineS36=700(10.9836)/(10.98)S_{36} = 700(1 - 0.98^{36}) / (1 - 0.98)\newlineFirst, calculate 0.98360.98^{36} using a calculator.
  4. Calculate 0.98360.98^{36}: Calculate 0.98360.98^{36}. \newline0.98360.48730.98^{36} \approx 0.4873 (rounded to four decimal places for simplicity)
  5. Substitute Back: Substitute 0.98360.98^{36} back into the sum formula.\newlineS36=700(10.4873)/(10.98)S_{36} = 700(1 - 0.4873) / (1 - 0.98)\newlineNow, calculate 10.48731 - 0.4873.
  6. Calculate 10.48731 - 0.4873: Calculate 10.48731 - 0.4873.\newline10.4873=0.51271 - 0.4873 = 0.5127
  7. Calculate Denominator: Substitute 0.51270.5127 into the sum formula and calculate the denominator 10.981 - 0.98. \newlineS36=700×0.5127/(10.98)S_{36} = 700 \times 0.5127 / (1 - 0.98)\newline10.98=0.021 - 0.98 = 0.02
  8. Calculate Sum: Calculate the sum S36S_{36}. S36=700×0.5127/0.02S_{36} = 700 \times 0.5127 / 0.02 Now, perform the division and multiplication to find the sum.
  9. Perform Division: Perform the calculation.\newlineS36=700×0.5127/0.02S_{36} = 700 \times 0.5127 / 0.02\newlineS36=700×25.635S_{36} = 700 \times 25.635\newlineS36=17944.5S_{36} = 17944.5
  10. Round to Nearest Integer: Round the sum to the nearest integer.\newlineThe sum S36S_{36} rounded to the nearest integer is 1794517945.

More problems from Sum of finite series starts from 1