Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical answer to the summation given below.

sum_(n=2)^(66)(7n+6)
Answer:

Find the numerical answer to the summation given below.\newlinen=266(7n+6) \sum_{n=2}^{66}(7 n+6) \newlineAnswer:

Full solution

Q. Find the numerical answer to the summation given below.\newlinen=266(7n+6) \sum_{n=2}^{66}(7 n+6) \newlineAnswer:
  1. Breakdown Summation: Recognize that the summation of a linear expression can be broken down into the summation of its individual terms. We can separate the given summation into two separate summations: one for the 7n7n term and one for the constant term 66. So, we rewrite the summation as: n=266(7n)+n=266(6)\sum_{n=2}^{66}(7n) + \sum_{n=2}^{66}(6)
  2. Evaluate First Term: Evaluate the first term n=266(7n)\sum_{n=2}^{66}(7n) using the summation rule for arithmetic series. The sum of an arithmetic series can be found using the formula:\newlinen=ab(dn)=d(b(b+1)2a(a1)2)\sum_{n=a}^{b}(dn) = d \cdot \left(\frac{b(b+1)}{2} - \frac{a(a-1)}{2}\right)\newlinewhere dd is the common difference, aa is the first term, and bb is the last term.\newlineIn our case, d=7d = 7, a=2a = 2, and b=66b = 66.\newlinen=266(7n)=7(66(66+1)22(21)2)\sum_{n=2}^{66}(7n) = 7 \cdot \left(\frac{66(66+1)}{2} - \frac{2(2-1)}{2}\right)
  3. Calculate First Term: Calculate the first term n=266(7n)\sum_{n=2}^{66}(7n) using the formula from Step 22.\newlinen=266(7n)=7×(66×6722×12)\sum_{n=2}^{66}(7n) = 7 \times \left(\frac{66\times67}{2} - \frac{2\times1}{2}\right)\newline=7×(22111)= 7 \times (2211 - 1)\newline=7×2210= 7 \times 2210\newline=15470= 15470
  4. Evaluate Second Term: Evaluate the second term n=266(6)\sum_{n=2}^{66}(6) using the summation rule for a constant. The sum of a constant kk from n=an=a to n=bn=b is simply k(ba+1)k(b-a+1).n=266(6)=6×(662+1)=6×65\sum_{n=2}^{66}(6) = 6 \times (66 - 2 + 1) = 6 \times 65
  5. Calculate Second Term: Calculate the second term n=266(6)\sum_{n=2}^{66}(6) using the calculation from Step 44.\newlinen=266(6)=6×65\sum_{n=2}^{66}(6) = 6 \times 65\newline=390= 390
  6. Find Total Sum: Add the results from Step 33 and Step 55 to find the total sum of the series.\newlineTotal sum = 15470+39015470 + 390\newline= 1586015860

More problems from Sum of finite series starts from 1