Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

cot(2θ)=1tan2θ2tanθ\cot(2\theta)=\frac{1-\tan^{2}\theta}{2\tan \theta}

Full solution

Q. cot(2θ)=1tan2θ2tanθ\cot(2\theta)=\frac{1-\tan^{2}\theta}{2\tan \theta}
  1. Apply Double Angle Identity: To verify the identity, we will start by using the double angle identity for cotangent, which is cot(2θ)=cos(2θ)sin(2θ)\cot(2\theta) = \frac{\cos(2\theta)}{\sin(2\theta)}. We will then express cos(2θ)\cos(2\theta) and sin(2θ)\sin(2\theta) in terms of tan(θ)\tan(\theta) using the Pythagorean identities.
  2. Express in Terms of tan(θ)\tan(\theta): The double angle formulas for sine and cosine are sin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2\sin(\theta)\cos(\theta) and cos(2θ)=cos2(θ)sin2(θ)\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta). We will use these to express sin(2θ)\sin(2\theta) and cos(2θ)\cos(2\theta) in terms of tan(θ)\tan(\theta).
  3. Use Pythagorean Identities: Since tan(θ)=sin(θ)cos(θ)\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}, we can express sin(θ)\sin(\theta) as tan(θ)cos(θ)\tan(\theta)\cos(\theta) and cos(θ)\cos(\theta) as 1cos(θ)\frac{1}{\cos(\theta)}. Therefore, sin(2θ)=2tan(θ)cos2(θ)\sin(2\theta) = 2\tan(\theta)\cos^2(\theta) and $\cos(\(2\)\theta) = \cos^\(2\)(\theta) - \sin^\(2\)(\theta) = \cos^\(2\)(\theta) - (\tan(\theta)\cos(\theta))^\(2\).
  4. Rewrite in Terms of \(\tan(\theta)\): We can rewrite \(\cos^2(\theta)\) as \(\frac{1}{1 + \tan^2(\theta)}\) using the Pythagorean identity \(1 + \tan^2(\theta) = \frac{1}{\cos^2(\theta)}\). This gives us \(\sin(2\theta) = \frac{2\tan(\theta)}{1 + \tan^2(\theta)}\) and \(\cos(2\theta) = \frac{1}{1 + \tan^2(\theta)} - \frac{\tan^2(\theta)}{1 + \tan^2(\theta)}\).
  5. Express \(\cot(2\theta)\): Now we can express \(\cot(2\theta)\) as \(\frac{\cos(2\theta)}{\sin(2\theta)} = \frac{\frac{1}{1 + \tan^2(\theta)} - \frac{\tan^2(\theta)}{1 + \tan^2(\theta)}}{\frac{2\tan(\theta)}{1 + \tan^2(\theta)}}\).
  6. Simplify the Expression: Simplify the expression by combining the terms in the numerator, which gives us \((1 - \tan^2(\theta))/(1 + \tan^2(\theta))\). Then divide by \((2\tan(\theta)/(1 + \tan^2(\theta)))\) to get \((1 - \tan^2(\theta))/(2\tan(\theta))\).
  7. Verify the Identity: We have now shown that \(\cot(2\theta) = \frac{1 - \tan^2(\theta)}{2\tan(\theta)}\), which is the same as the given identity. Therefore, the identity is verified.

More problems from Sum of finite series starts from 1