Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Precalculus
Find trigonometric ratios using multiple identities
Write the following in terms of
sin
(
x
)
\sin (x)
sin
(
x
)
and
cos
(
x
)
\cos (x)
cos
(
x
)
, and then simplify if possible. Leave your answer in terms of sines and cosines only.
\newline
csc
(
x
)
cot
(
x
)
=
\csc (x) \cot (x)=
csc
(
x
)
cot
(
x
)
=
Get tutor help
For the rotation
−
55
5
∘
-555^{\circ}
−
55
5
∘
, find the coterminal angle from
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, the quadrant, and the reference angle.
\newline
The coterminal angle is
□
∘
\square^{\circ}
□
∘
, which lies in Quadrant
□
\square
□
, with a reference angle of
□
∘
\square^{\circ}
□
∘
.
Get tutor help
If
tan
A
=
60
11
\tan A=\frac{60}{11}
tan
A
=
11
60
and
sin
B
=
3
5
\sin B=\frac{3}{5}
sin
B
=
5
3
and angles A and B are in Quadrant I, find the value of
tan
(
A
+
B
)
\tan (A+B)
tan
(
A
+
B
)
.
\newline
Answer:
Get tutor help
If
sin
A
=
12
37
\sin A=\frac{12}{37}
sin
A
=
37
12
and
tan
B
=
7
24
\tan B=\frac{7}{24}
tan
B
=
24
7
and angles A and B are in Quadrant I, find the value of
tan
(
A
−
B
)
\tan (A-B)
tan
(
A
−
B
)
.
\newline
Answer:
Get tutor help
If
cos
A
=
12
37
\cos A=\frac{12}{37}
cos
A
=
37
12
and
sin
B
=
3
5
\sin B=\frac{3}{5}
sin
B
=
5
3
and angles A and B are in Quadrant I, find the value of
tan
(
A
−
B
)
\tan (A-B)
tan
(
A
−
B
)
.
\newline
Answer:
Get tutor help
Given that
cos
x
=
5
4
\cos x=\frac{\sqrt{5}}{4}
cos
x
=
4
5
and
sin
y
=
1
4
\sin y=\frac{1}{4}
sin
y
=
4
1
, and that angles
x
x
x
and
y
y
y
are both in Quadrant I, find the exact value of
cos
(
x
−
y
)
\cos (x-y)
cos
(
x
−
y
)
, in simplest radical form.
\newline
Answer:
Get tutor help
If
cos
A
=
4
5
\cos A=\frac{4}{5}
cos
A
=
5
4
and
tan
B
=
11
60
\tan B=\frac{11}{60}
tan
B
=
60
11
and angles A and B are in Quadrant I, find the value of
tan
(
A
+
B
)
\tan (A+B)
tan
(
A
+
B
)
.
\newline
Answer:
Get tutor help
If
tan
A
=
28
45
\tan A=\frac{28}{45}
tan
A
=
45
28
and
cos
B
=
4
5
\cos B=\frac{4}{5}
cos
B
=
5
4
and angles A and B are in Quadrant I, find the value of
tan
(
A
−
B
)
\tan (A-B)
tan
(
A
−
B
)
.
\newline
Answer:
Get tutor help
Find the argument of the complex number
−
3
3
+
9
i
-3 \sqrt{3}+9 i
−
3
3
+
9
i
in the interval
0
≤
θ
<
2
π
0 \leq \theta<2 \pi
0
≤
θ
<
2
π
. Express your answer in terms of
π
\pi
π
.
\newline
Answer:
Get tutor help
Find the argument of the complex number
3
+
3
i
3+\sqrt{3} i
3
+
3
i
in the interval
0
≤
θ
<
2
π
0 \leq \theta<2 \pi
0
≤
θ
<
2
π
.
\newline
Express your answer in terms of
π
\pi
π
.
\newline
Answer:
Get tutor help
Find the argument of the complex number
3
−
3
i
3-\sqrt{3} i
3
−
3
i
in the interval
0
≤
θ
<
2
π
0 \leq \theta<2 \pi
0
≤
θ
<
2
π
.
\newline
Express your answer in terms of
π
\pi
π
.
\newline
Answer:
Get tutor help
The area of a triangle is
866
866
866
. Two of the side lengths are
33
33
33
and
98
98
98
and the included angle is acute. Find the measure of the included angle, to the nearest tenth of a degree.
\newline
Answer:
Get tutor help
Given
tan
A
=
−
11
60
\tan A=-\frac{11}{60}
tan
A
=
−
60
11
and that angle
A
A
A
is in Quadrant IV, find the exact value of
csc
A
\csc A
csc
A
in simplest radical form using a rational denominator.
Get tutor help
If
a
1
=
0
,
a
2
=
2
a_{1}=0, a_{2}=2
a
1
=
0
,
a
2
=
2
and
a
n
=
a
n
−
1
+
3
a
n
−
2
a_{n}=a_{n-1}+3 a_{n-2}
a
n
=
a
n
−
1
+
3
a
n
−
2
then find the value of
a
4
a_{4}
a
4
.
\newline
Answer:
Get tutor help
Given that
f
(
x
)
=
2
x
,
g
(
x
)
=
x
−
2
f(x)=2 x, g(x)=x-2
f
(
x
)
=
2
x
,
g
(
x
)
=
x
−
2
and
h
(
x
)
=
−
3
f
(
x
+
3
)
−
g
(
x
)
h(x)=-3 f(x+3)-g(x)
h
(
x
)
=
−
3
f
(
x
+
3
)
−
g
(
x
)
, then what is the value of
h
(
1
)
h(1)
h
(
1
)
?
\newline
Answer:
Get tutor help
If
f
(
1
)
=
9
f(1)=9
f
(
1
)
=
9
and
f
(
n
)
=
n
f
(
n
−
1
)
−
2
f(n)=n f(n-1)-2
f
(
n
)
=
n
f
(
n
−
1
)
−
2
then find the value of
f
(
5
)
f(5)
f
(
5
)
.
\newline
Answer:
Get tutor help
Given that
f
(
x
)
=
−
2
x
,
g
(
x
)
=
x
−
2
f(x)=-2 x, g(x)=x-2
f
(
x
)
=
−
2
x
,
g
(
x
)
=
x
−
2
and
h
(
x
)
=
−
2
f
(
x
)
+
3
g
(
x
+
1
)
h(x)=-2 f(x)+3 g(x+1)
h
(
x
)
=
−
2
f
(
x
)
+
3
g
(
x
+
1
)
, then what is the value of
h
(
6
)
h(6)
h
(
6
)
?
\newline
Answer:
Get tutor help
Given that
f
(
x
)
=
x
+
1
,
g
(
x
)
=
−
3
x
f(x)=x+1, g(x)=-3 x
f
(
x
)
=
x
+
1
,
g
(
x
)
=
−
3
x
and
h
(
x
)
=
−
f
(
x
)
+
3
g
(
x
+
3
)
h(x)=-f(x)+3 g(x+3)
h
(
x
)
=
−
f
(
x
)
+
3
g
(
x
+
3
)
, then what is the value of
h
(
3
)
h(3)
h
(
3
)
?
\newline
Answer:
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
93
8
∘
938^{\circ}
93
8
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Given
f
(
x
)
=
−
4
x
−
1
f(x)=-4 x-1
f
(
x
)
=
−
4
x
−
1
, find
f
(
−
5
)
f(-5)
f
(
−
5
)
.
\newline
Answer:
Get tutor help
Given
g
(
x
)
=
−
x
−
2
g(x)=-x-2
g
(
x
)
=
−
x
−
2
, find
g
(
−
6
)
g(-6)
g
(
−
6
)
.
\newline
Answer:
Get tutor help
Given
g
(
x
)
=
−
x
+
2
g(x)=-x+2
g
(
x
)
=
−
x
+
2
, find
g
(
−
6
)
g(-6)
g
(
−
6
)
.
\newline
Answer:
Get tutor help
Given
h
(
x
)
=
−
x
−
4
h(x)=-x-4
h
(
x
)
=
−
x
−
4
, find
h
(
−
2
)
h(-2)
h
(
−
2
)
.
\newline
Answer:
Get tutor help
Given
h
(
x
)
=
−
x
+
5
h(x)=-x+5
h
(
x
)
=
−
x
+
5
, find
h
(
−
2
)
h(-2)
h
(
−
2
)
.
\newline
Answer:
Get tutor help
Given
h
(
x
)
=
−
4
x
−
3
h(x)=-4 x-3
h
(
x
)
=
−
4
x
−
3
, find
h
(
−
3
)
h(-3)
h
(
−
3
)
.
\newline
Answer:
Get tutor help
Given
g
(
x
)
=
−
3
x
−
2
g(x)=-3 x-2
g
(
x
)
=
−
3
x
−
2
, find
g
(
−
2
)
g(-2)
g
(
−
2
)
.
\newline
Answer:
Get tutor help
Evaluate the left hand side to find the value of
a
a
a
in the equation in simplest form.
\newline
x
3
4
x
3
=
x
a
x^{\frac{3}{4}} x^{3}=x^{a}
x
4
3
x
3
=
x
a
\newline
Answer:
Get tutor help
Evaluate the left hand side to find the value of
a
a
a
in the equation in simplest form.
\newline
x
1
2
x
6
=
x
a
x^{\frac{1}{2}} x^{6}=x^{a}
x
2
1
x
6
=
x
a
\newline
Answer:
Get tutor help
If
f
(
1
)
=
7
f(1)=7
f
(
1
)
=
7
and
f
(
n
)
=
2
f
(
n
−
1
)
−
2
f(n)=2 f(n-1)-2
f
(
n
)
=
2
f
(
n
−
1
)
−
2
then find the value of
f
(
3
)
f(3)
f
(
3
)
.
\newline
Answer:
Get tutor help
If
a
1
=
9
a_{1}=9
a
1
=
9
and
a
n
=
−
4
a
n
−
1
+
4
a_{n}=-4 a_{n-1}+4
a
n
=
−
4
a
n
−
1
+
4
then find the value of
a
3
a_{3}
a
3
.
\newline
Answer:
Get tutor help
If
a
1
=
7
a_{1}=7
a
1
=
7
and
a
n
=
−
2
a
n
−
1
−
2
a_{n}=-2 a_{n-1}-2
a
n
=
−
2
a
n
−
1
−
2
then find the value of
a
3
a_{3}
a
3
.
\newline
Answer:
Get tutor help
If
a
1
=
1
a_{1}=1
a
1
=
1
and
a
n
=
3
a
n
−
1
+
2
a_{n}=3 a_{n-1}+2
a
n
=
3
a
n
−
1
+
2
then find the value of
a
5
a_{5}
a
5
.
\newline
Answer:
Get tutor help
If
a
1
=
10
a_{1}=10
a
1
=
10
and
a
n
=
3
a
n
−
1
−
5
a_{n}=3 a_{n-1}-5
a
n
=
3
a
n
−
1
−
5
then find the value of
a
4
a_{4}
a
4
.
\newline
Answer:
Get tutor help
If
a
1
=
8
a_{1}=8
a
1
=
8
and
a
n
=
−
4
a
n
−
1
−
n
a_{n}=-4 a_{n-1}-n
a
n
=
−
4
a
n
−
1
−
n
then find the value of
a
4
a_{4}
a
4
.
\newline
Answer:
Get tutor help
If
a
1
=
1
a_{1}=1
a
1
=
1
and
a
n
=
3
a
n
−
1
−
n
a_{n}=3 a_{n-1}-n
a
n
=
3
a
n
−
1
−
n
then find the value of
a
5
a_{5}
a
5
.
\newline
Answer:
Get tutor help
If
a
1
=
9
a_{1}=9
a
1
=
9
and
a
n
+
1
=
4
a
n
+
4
a_{n+1}=4 a_{n}+4
a
n
+
1
=
4
a
n
+
4
then find the value of
a
3
a_{3}
a
3
.
\newline
Answer:
Get tutor help
If
a
1
=
7
a_{1}=7
a
1
=
7
and
a
n
+
1
=
−
3
a
n
+
5
a_{n+1}=-3 a_{n}+5
a
n
+
1
=
−
3
a
n
+
5
then find the value of
a
3
a_{3}
a
3
.
\newline
Answer:
Get tutor help
If
a
1
=
10
a_{1}=10
a
1
=
10
and
a
n
+
1
=
−
3
a
n
+
5
a_{n+1}=-3 a_{n}+5
a
n
+
1
=
−
3
a
n
+
5
then find the value of
a
4
a_{4}
a
4
.
\newline
Answer:
Get tutor help
If
a
1
=
3
a_{1}=3
a
1
=
3
and
a
n
+
1
=
3
a
n
+
5
a_{n+1}=3 a_{n}+5
a
n
+
1
=
3
a
n
+
5
then find the value of
a
4
a_{4}
a
4
.
\newline
Answer:
Get tutor help
If
a
1
=
4
a_{1}=4
a
1
=
4
and
a
n
+
1
=
2
a
n
+
4
a_{n+1}=2 a_{n}+4
a
n
+
1
=
2
a
n
+
4
then find the value of
a
3
a_{3}
a
3
.
\newline
Answer:
Get tutor help
Determine the value of
y
y
y
, if
x
x
x
is
25
25
25
.
\newline
y
=
x
+
11
y=\sqrt{x+11}
y
=
x
+
11
\newline
Answer:
y
=
y=
y
=
Get tutor help
Given the function
y
=
−
4
x
4
5
5
y=-\frac{4 \sqrt[5]{x^{4}}}{5}
y
=
−
5
4
5
x
4
, find
d
y
d
x
\frac{d y}{d x}
d
x
d
y
. Express your answer in radical form without using negative exponents, simplifying all fractions.
\newline
Answer:
d
y
d
x
=
\frac{d y}{d x}=
d
x
d
y
=
Get tutor help
Given the function
y
=
−
2
3
x
4
5
y=-\frac{2}{3 \sqrt[5]{x^{4}}}
y
=
−
3
5
x
4
2
, find
d
y
d
x
\frac{d y}{d x}
d
x
d
y
. Express your answer in radical form without using negative exponents, simplifying all fractions.
\newline
Answer:
d
y
d
x
=
\frac{d y}{d x}=
d
x
d
y
=
Get tutor help
Given the function
y
=
4
5
x
3
5
y=\frac{4}{5 \sqrt[5]{x^{3}}}
y
=
5
5
x
3
4
, find
d
y
d
x
\frac{d y}{d x}
d
x
d
y
. Express your answer in radical form without using negative exponents, simplifying all fractions.
\newline
Answer:
d
y
d
x
=
\frac{d y}{d x}=
d
x
d
y
=
Get tutor help
Given the function
f
(
x
)
=
3
x
2
−
3
x
f(x)=\frac{3 \sqrt{x}}{2}-\frac{3}{\sqrt{x}}
f
(
x
)
=
2
3
x
−
x
3
, find
f
′
(
6
)
f^{\prime}(6)
f
′
(
6
)
. Express your answer as a single fraction in simplest radical form.
\newline
Answer:
f
′
(
6
)
=
f^{\prime}(6)=
f
′
(
6
)
=
Get tutor help
Given the function
f
(
x
)
=
3
2
x
−
3
x
2
f(x)=\frac{3}{2 \sqrt{x}}-\frac{3 \sqrt{x}}{2}
f
(
x
)
=
2
x
3
−
2
3
x
, find
f
′
(
3
)
f^{\prime}(3)
f
′
(
3
)
. Express your answer as a single fraction in simplest radical form.
\newline
Answer:
f
′
(
3
)
=
f^{\prime}(3)=
f
′
(
3
)
=
Get tutor help
Given the function
f
(
x
)
=
−
x
3
+
3
2
x
f(x)=-\sqrt{x^{3}}+\frac{3}{2 \sqrt{x}}
f
(
x
)
=
−
x
3
+
2
x
3
, find
f
′
(
3
)
f^{\prime}(3)
f
′
(
3
)
. Express your answer as a single fraction in simplest radical form.
\newline
Answer:
f
′
(
3
)
=
f^{\prime}(3)=
f
′
(
3
)
=
Get tutor help
In
△
A
B
C
,
A
C
‾
\triangle \mathrm{ABC}, \overline{A C}
△
ABC
,
A
C
is extended through point
C
\mathrm{C}
C
to point
D
,
m
∠
C
A
B
=
(
x
+
14
)
∘
\mathrm{D}, \mathrm{m} \angle C A B=(x+14)^{\circ}
D
,
m
∠
C
A
B
=
(
x
+
14
)
∘
,
m
∠
A
B
C
=
(
x
−
3
)
∘
\mathrm{m} \angle A B C=(x-3)^{\circ}
m
∠
A
BC
=
(
x
−
3
)
∘
, and
m
∠
B
C
D
=
(
4
x
−
11
)
∘
\mathrm{m} \angle B C D=(4 x-11)^{\circ}
m
∠
BC
D
=
(
4
x
−
11
)
∘
. What is the value of
x
?
x ?
x
?
\newline
Answer:
Get tutor help
If
6
x
+
9
y
=
−
9
6 x+9 y=-9
6
x
+
9
y
=
−
9
is a true equation, what would be the value of
−
3
+
6
x
+
9
y
?
-3+6 x+9 y ?
−
3
+
6
x
+
9
y
?
\newline
Answer:
Get tutor help
If
x
+
9
y
=
−
8
\mathbf{x}+\mathbf{9 y}=-\mathbf{8}
x
+
9y
=
−
8
is a true equation, what would be the value of
2
+
x
+
9
y
\mathbf{2}+\mathbf{x}+\mathbf{9 y}
2
+
x
+
9y
?
\newline
Answer:
Get tutor help
1
2
Next