Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
cos x=(sqrt5)/(4) and 
sin y=(1)/(4), and that angles 
x and 
y are both in Quadrant I, find the exact value of 
cos(x-y), in simplest radical form.
Answer:

Given that cosx=54 \cos x=\frac{\sqrt{5}}{4} and siny=14 \sin y=\frac{1}{4} , and that angles x x and y y are both in Quadrant I, find the exact value of cos(xy) \cos (x-y) , in simplest radical form.\newlineAnswer:

Full solution

Q. Given that cosx=54 \cos x=\frac{\sqrt{5}}{4} and siny=14 \sin y=\frac{1}{4} , and that angles x x and y y are both in Quadrant I, find the exact value of cos(xy) \cos (x-y) , in simplest radical form.\newlineAnswer:
  1. Given Trigonometric Values: We are given that cosx=54\cos x = \frac{\sqrt{5}}{4} and siny=14\sin y = \frac{1}{4}, and we need to find cos(xy)\cos(x-y). We can use the cosine difference identity, which states that cos(xy)=cosxcosy+sinxsiny\cos(x-y) = \cos x \cdot \cos y + \sin x \cdot \sin y. First, we need to find cosy\cos y and sinx\sin x.
  2. Find cosy\cos y: Since siny=14\sin y = \frac{1}{4} and yy is in Quadrant I, where all trigonometric functions are positive, we can find cosy\cos y using the Pythagorean identity sin2y+cos2y=1\sin^2y + \cos^2y = 1. We calculate cosy\cos y as follows:\newlinecos2y=1sin2y\cos^2y = 1 - \sin^2y\newlinecos2y=1(14)2\cos^2y = 1 - \left(\frac{1}{4}\right)^2\newlinecos2y=1116\cos^2y = 1 - \frac{1}{16}\newlinecos2y=1516\cos^2y = \frac{15}{16}\newlinesiny=14\sin y = \frac{1}{4}00\newlinesiny=14\sin y = \frac{1}{4}11
  3. Find sinx\sin x: Similarly, we can find sinx\sin x using the Pythagorean identity sin2x+cos2x=1\sin^2x + \cos^2x = 1. We calculate sinx\sin x as follows:\newlinesin2x=1cos2x\sin^2x = 1 - \cos^2x\newlinesin2x=1(5/4)2\sin^2x = 1 - (\sqrt{5}/4)^2\newlinesin2x=15/16\sin^2x = 1 - 5/16\newlinesin2x=11/16\sin^2x = 11/16\newlinesinx=11/16\sin x = \sqrt{11/16}\newlinesinx=11/4\sin x = \sqrt{11}/4
  4. Calculate cos(xy)\cos(x-y): Now that we have cosy=154\cos y = \frac{\sqrt{15}}{4} and sinx=114\sin x = \frac{\sqrt{11}}{4}, we can substitute these values into the cosine difference identity:\newlinecos(xy)=cosxcosy+sinxsiny\cos(x-y) = \cos x \cdot \cos y + \sin x \cdot \sin y\newlinecos(xy)=(54)(154)+(114)(14)\cos(x-y) = \left(\frac{\sqrt{5}}{4}\right) \cdot \left(\frac{\sqrt{15}}{4}\right) + \left(\frac{\sqrt{11}}{4}\right) \cdot \left(\frac{1}{4}\right)\newlinecos(xy)=51544+1144\cos(x-y) = \frac{\sqrt{5} \cdot \sqrt{15}}{4 \cdot 4} + \frac{\sqrt{11}}{4 \cdot 4}\newlinecos(xy)=75+1116\cos(x-y) = \frac{\sqrt{75} + \sqrt{11}}{16}
  5. Simplify 75\sqrt{75}: We can simplify 75\sqrt{75} by factoring out the perfect square:\newline75=25×3\sqrt{75} = \sqrt{25 \times 3}\newline75=25×3\sqrt{75} = \sqrt{25} \times \sqrt{3}\newline75=5×3\sqrt{75} = 5 \times \sqrt{3}
  6. Substitute and Simplify: Substitute the simplified form of 75\sqrt{75} back into the expression for cos(xy)\cos(x-y):cos(xy)=53+1116\cos(x-y) = \frac{5 \cdot \sqrt{3} + \sqrt{11}}{16}This is the exact value of cos(xy)\cos(x-y) in simplest radical form.

More problems from Find trigonometric ratios using multiple identities