Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
sin A=(12)/(37) and 
tan B=(7)/(24) and angles A and B are in Quadrant I, find the value of 
tan(A-B).
Answer:

If sinA=1237 \sin A=\frac{12}{37} and tanB=724 \tan B=\frac{7}{24} and angles A and B are in Quadrant I, find the value of tan(AB) \tan (A-B) .\newlineAnswer:

Full solution

Q. If sinA=1237 \sin A=\frac{12}{37} and tanB=724 \tan B=\frac{7}{24} and angles A and B are in Quadrant I, find the value of tan(AB) \tan (A-B) .\newlineAnswer:
  1. Use Pythagorean Identity: We know that sinA=1237\sin A = \frac{12}{37}. To find cosA\cos A, we use the Pythagorean identity sin2A+cos2A=1\sin^2 A + \cos^2 A = 1.\newlineSubstitute sinA\sin A into the identity:\newline(1237)2+cos2A=1(\frac{12}{37})^2 + \cos^2 A = 1.
  2. Calculate cosA\cos A: Calculate (12/37)2(12/37)^2 and simplify the equation to find cos2A\cos^2 A:$12/37)2=144/1369\$12/37)^2 = 144/1369.cos2A=1144/1369\cos^2 A = 1 - 144/1369.
  3. Find cosB\cos B: Subtract 1441369\frac{144}{1369} from 11 to find cos2A\cos^2 A:
    cos2A=136913691441369\cos^2 A = \frac{1369}{1369} - \frac{144}{1369}.
    cos2A=12251369\cos^2 A = \frac{1225}{1369}.
  4. Calculate tan(AB)\tan(A-B): Take the square root of cos2A\cos^2 A to find cosA\cos A. Since AA is in Quadrant I, cosA\cos A is positive:\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}.\newlinecosA=3537\cos A = \frac{35}{37}.
  5. Calculate tan(AB)\tan(A-B): Take the square root of cos2A\cos^2 A to find cosA\cos A. Since AA is in Quadrant I, cosA\cos A is positive:\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}.\newlinecosA=3537\cos A = \frac{35}{37}.We know that tanB=724\tan B = \frac{7}{24}. To find cosB\cos B, we use the identity 1+tan2B=sec2B1 + \tan^2 B = \sec^2 B.\newlineFirst, find cos2A\cos^2 A00:\newlinecos2A\cos^2 A11.
  6. Calculate tan(AB)\tan(A-B): Take the square root of cos2A\cos^2 A to find cosA\cos A. Since AA is in Quadrant I, cosA\cos A is positive:\newlinecosA=1225/1369\cos A = \sqrt{1225/1369}.\newlinecosA=35/37\cos A = 35/37.We know that tanB=7/24\tan B = 7/24. To find cosB\cos B, we use the identity 1+tan2B=sec2B1 + \tan^2 B = \sec^2 B.\newlineFirst, find cos2A\cos^2 A00:\newlinecos2A\cos^2 A11.Calculate cos2A\cos^2 A22 and add it to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecos2A\cos^2 A55.\newlinecos2A\cos^2 A66.
  7. Calculate tan(AB)\tan(A-B): Take the square root of cos2A\cos^2 A to find cosA\cos A. Since AA is in Quadrant I, cosA\cos A is positive:\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}.\newlinecosA=3537\cos A = \frac{35}{37}.We know that tanB=724\tan B = \frac{7}{24}. To find cosB\cos B, we use the identity 1+tan2B=sec2B1 + \tan^2 B = \sec^2 B.\newlineFirst, find cos2A\cos^2 A00:\newlinecos2A\cos^2 A11.Calculate cos2A\cos^2 A22 and add it to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecos2A\cos^2 A55.\newlinecos2A\cos^2 A66.Add cos2A\cos^2 A77 to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecosA\cos A00.\newlinecosA\cos A11.
  8. Calculate tan(AB)\tan(A-B): Take the square root of cos2A\cos^2 A to find cosA\cos A. Since AA is in Quadrant I, cosA\cos A is positive:\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}.\newlinecosA=3537\cos A = \frac{35}{37}.We know that tanB=724\tan B = \frac{7}{24}. To find cosB\cos B, we use the identity 1+tan2B=sec2B1 + \tan^2 B = \sec^2 B.\newlineFirst, find cos2A\cos^2 A00:\newlinecos2A\cos^2 A11.Calculate cos2A\cos^2 A22 and add it to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecos2A\cos^2 A55.\newlinecos2A\cos^2 A66.Add cos2A\cos^2 A77 to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecosA\cos A00.\newlinecosA\cos A11.Take the square root of cos2A\cos^2 A00 to find cosA\cos A33. Since cosA\cos A44 is in Quadrant I, cosA\cos A33 is positive:\newlinecosA\cos A66.\newlinecosA\cos A77.
  9. Calculate tan(AB)\tan(A-B): Take the square root of cos2A\cos^2 A to find cosA\cos A. Since AA is in Quadrant I, cosA\cos A is positive:\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}.\newlinecosA=3537\cos A = \frac{35}{37}.We know that tanB=724\tan B = \frac{7}{24}. To find cosB\cos B, we use the identity 1+tan2B=sec2B1 + \tan^2 B = \sec^2 B.\newlineFirst, find cos2A\cos^2 A00:\newlinecos2A\cos^2 A11.Calculate cos2A\cos^2 A22 and add it to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecos2A\cos^2 A55.\newlinecos2A\cos^2 A66.Add cos2A\cos^2 A77 to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecosA\cos A00.\newlinecosA\cos A11.Take the square root of cos2A\cos^2 A00 to find cosA\cos A33. Since cosA\cos A44 is in Quadrant I, cosA\cos A33 is positive:\newlinecosA\cos A66.\newlinecosA\cos A77.To find cosB\cos B, we use the reciprocal of cosA\cos A33:\newlineAA00.\newlineAA11.
  10. Calculate tan(AB)\tan(A-B): Take the square root of cos2A\cos^2 A to find cosA\cos A. Since AA is in Quadrant I, cosA\cos A is positive:\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}.\newlinecosA=3537\cos A = \frac{35}{37}.We know that tanB=724\tan B = \frac{7}{24}. To find cosB\cos B, we use the identity 1+tan2B=sec2B1 + \tan^2 B = \sec^2 B.\newlineFirst, find cos2A\cos^2 A00:\newlinecos2A\cos^2 A11.Calculate cos2A\cos^2 A22 and add it to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecos2A\cos^2 A55.\newlinecos2A\cos^2 A66.Add cos2A\cos^2 A77 to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecosA\cos A00.\newlinecosA\cos A11.Take the square root of cos2A\cos^2 A00 to find cosA\cos A33. Since cosA\cos A44 is in Quadrant I, cosA\cos A33 is positive:\newlinecosA\cos A66.\newlinecosA\cos A77.To find cosB\cos B, we use the reciprocal of cosA\cos A33:\newlineAA00.\newlineAA11.Calculate the reciprocal of cosA\cos A33 to find cosB\cos B:\newlineAA44.
  11. Calculate tan(AB)\tan(A-B): Take the square root of cos2A\cos^2 A to find cosA\cos A. Since AA is in Quadrant I, cosA\cos A is positive:\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}.\newlinecosA=3537\cos A = \frac{35}{37}.We know that tanB=724\tan B = \frac{7}{24}. To find cosB\cos B, we use the identity 1+tan2B=sec2B1 + \tan^2 B = \sec^2 B.\newlineFirst, find cos2A\cos^2 A00:\newlinecos2A\cos^2 A11.Calculate cos2A\cos^2 A22 and add it to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecos2A\cos^2 A55.\newlinecos2A\cos^2 A66.Add cos2A\cos^2 A77 to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecosA\cos A00.\newlinecosA\cos A11.Take the square root of cos2A\cos^2 A00 to find cosA\cos A33. Since cosA\cos A44 is in Quadrant I, cosA\cos A33 is positive:\newlinecosA\cos A66.\newlinecosA\cos A77.To find cosB\cos B, we use the reciprocal of cosA\cos A33:\newlineAA00.\newlineAA11.Calculate the reciprocal of cosA\cos A33 to find cosB\cos B:\newlineAA44.Now we have cosA=3537\cos A = \frac{35}{37}, AA66, AA44, and tanB=724\tan B = \frac{7}{24}. We can use the formula for tan(AB)\tan(A-B):\newlinecosA\cos A00.\newlineSince we have cosA\cos A11 and cosA\cos A, we can find cosA\cos A33:\newlinecosA\cos A44.\newlinecosA\cos A55.
  12. Calculate tan(AB)\tan(A-B): Take the square root of cos2A\cos^2 A to find cosA\cos A. Since AA is in Quadrant I, cosA\cos A is positive:\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}.\newlinecosA=3537\cos A = \frac{35}{37}.We know that tanB=724\tan B = \frac{7}{24}. To find cosB\cos B, we use the identity 1+tan2B=sec2B1 + \tan^2 B = \sec^2 B.\newlineFirst, find cos2A\cos^2 A00:\newlinecos2A\cos^2 A11.Calculate cos2A\cos^2 A22 and add it to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecos2A\cos^2 A55.\newlinecos2A\cos^2 A66.Add cos2A\cos^2 A77 to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecosA\cos A00.\newlinecosA\cos A11.Take the square root of cos2A\cos^2 A00 to find cosA\cos A33. Since cosA\cos A44 is in Quadrant I, cosA\cos A33 is positive:\newlinecosA\cos A66.\newlinecosA\cos A77.To find cosB\cos B, we use the reciprocal of cosA\cos A33:\newlineAA00.\newlineAA11.Calculate the reciprocal of cosA\cos A33 to find cosB\cos B:\newlineAA44.Now we have cosA=3537\cos A = \frac{35}{37}, AA66, AA44, and tanB=724\tan B = \frac{7}{24}. We can use the formula for tan(AB)\tan(A-B):\newlinecosA\cos A00.\newlineSince we have cosA\cos A11 and cosA\cos A, we can find cosA\cos A33:\newlinecosA\cos A44.\newlinecosA\cos A55.Calculate cosA\cos A33 by dividing cosA\cos A11 by cosA\cos A:\newlinecosA\cos A99.\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}00.
  13. Calculate tan(AB)\tan(A-B): Take the square root of cos2A\cos^2 A to find cosA\cos A. Since AA is in Quadrant I, cosA\cos A is positive:\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}.\newlinecosA=3537\cos A = \frac{35}{37}.We know that tanB=724\tan B = \frac{7}{24}. To find cosB\cos B, we use the identity 1+tan2B=sec2B1 + \tan^2 B = \sec^2 B.\newlineFirst, find cos2A\cos^2 A00:\newlinecos2A\cos^2 A11.Calculate cos2A\cos^2 A22 and add it to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecos2A\cos^2 A55.\newlinecos2A\cos^2 A66.Add cos2A\cos^2 A77 to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecosA\cos A00.\newlinecosA\cos A11.Take the square root of cos2A\cos^2 A00 to find cosA\cos A33. Since cosA\cos A44 is in Quadrant I, cosA\cos A33 is positive:\newlinecosA\cos A66.\newlinecosA\cos A77.To find cosB\cos B, we use the reciprocal of cosA\cos A33:\newlineAA00.\newlineAA11.Calculate the reciprocal of cosA\cos A33 to find cosB\cos B:\newlineAA44.Now we have cosA=3537\cos A = \frac{35}{37}, AA66, AA44, and tanB=724\tan B = \frac{7}{24}. We can use the formula for tan(AB)\tan(A-B):\newlinecosA\cos A00.\newlineSince we have cosA\cos A11 and cosA\cos A, we can find cosA\cos A33:\newlinecosA\cos A44.\newlinecosA\cos A55.Calculate cosA\cos A33 by dividing cosA\cos A11 by cosA\cos A:\newlinecosA\cos A99.\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}00.Substitute cosA\cos A33 and cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}22 into the formula for tan(AB)\tan(A-B):\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}44.
  14. Calculate tan(AB)\tan(A-B): Take the square root of cos2A\cos^2 A to find cosA\cos A. Since AA is in Quadrant I, cosA\cos A is positive:\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}.\newlinecosA=3537\cos A = \frac{35}{37}.We know that tanB=724\tan B = \frac{7}{24}. To find cosB\cos B, we use the identity 1+tan2B=sec2B1 + \tan^2 B = \sec^2 B.\newlineFirst, find cos2A\cos^2 A00:\newlinecos2A\cos^2 A11.Calculate cos2A\cos^2 A22 and add it to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecos2A\cos^2 A55.\newlinecos2A\cos^2 A66.Add cos2A\cos^2 A77 to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecosA\cos A00.\newlinecosA\cos A11.Take the square root of cos2A\cos^2 A00 to find cosA\cos A33. Since cosA\cos A44 is in Quadrant I, cosA\cos A33 is positive:\newlinecosA\cos A66.\newlinecosA\cos A77.To find cosB\cos B, we use the reciprocal of cosA\cos A33:\newlineAA00.\newlineAA11.Calculate the reciprocal of cosA\cos A33 to find cosB\cos B:\newlineAA44.Now we have cosA=3537\cos A = \frac{35}{37}, AA66, AA44, and tanB=724\tan B = \frac{7}{24}. We can use the formula for tan(AB)\tan(A-B):\newlinecosA\cos A00.\newlineSince we have cosA\cos A11 and cosA\cos A, we can find cosA\cos A33:\newlinecosA\cos A44.\newlinecosA\cos A55.Calculate cosA\cos A33 by dividing cosA\cos A11 by cosA\cos A:\newlinecosA\cos A99.\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}00.Substitute cosA\cos A33 and cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}22 into the formula for tan(AB)\tan(A-B):\newlinecosA\cos A00.\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}55.Calculate the numerator and denominator separately:\newlineNumerator: cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}66.\newlineNumerator: cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}77.\newlineNumerator: cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}88.\newlineDenominator: cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}99.\newlineDenominator: cosA=3537\cos A = \frac{35}{37}00.\newlineDenominator: cosA=3537\cos A = \frac{35}{37}11.
  15. Calculate tan(AB)\tan(A-B): Take the square root of cos2A\cos^2 A to find cosA\cos A. Since AA is in Quadrant I, cosA\cos A is positive:\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}.\newlinecosA=3537\cos A = \frac{35}{37}.We know that tanB=724\tan B = \frac{7}{24}. To find cosB\cos B, we use the identity 1+tan2B=sec2B1 + \tan^2 B = \sec^2 B.\newlineFirst, find cos2A\cos^2 A00:\newlinecos2A\cos^2 A11.Calculate cos2A\cos^2 A22 and add it to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecos2A\cos^2 A55.\newlinecos2A\cos^2 A66.Add cos2A\cos^2 A77 to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecosA\cos A00.\newlinecosA\cos A11.Take the square root of cos2A\cos^2 A00 to find cosA\cos A33. Since cosA\cos A44 is in Quadrant I, cosA\cos A33 is positive:\newlinecosA\cos A66.\newlinecosA\cos A77.To find cosB\cos B, we use the reciprocal of cosA\cos A33:\newlineAA00.\newlineAA11.Calculate the reciprocal of cosA\cos A33 to find cosB\cos B:\newlineAA44.Now we have cosA=3537\cos A = \frac{35}{37}, AA66, AA44, and tanB=724\tan B = \frac{7}{24}. We can use the formula for tan(AB)\tan(A-B):\newlinecosA\cos A00.\newlineSince we have cosA\cos A11 and cosA\cos A, we can find cosA\cos A33:\newlinecosA\cos A44.\newlinecosA\cos A55.Calculate cosA\cos A33 by dividing cosA\cos A11 by cosA\cos A:\newlinecosA\cos A99.\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}00.Substitute cosA\cos A33 and cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}22 into the formula for tan(AB)\tan(A-B):\newlinecosA\cos A00.\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}55.Calculate the numerator and denominator separately:\newlineNumerator: cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}66.\newlineNumerator: cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}77.\newlineNumerator: cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}88.\newlineDenominator: cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}99.\newlineDenominator: cosA=3537\cos A = \frac{35}{37}00.\newlineDenominator: cosA=3537\cos A = \frac{35}{37}11.Now, divide the numerator by the denominator to find tan(AB)\tan(A-B):\newlinecosA=3537\cos A = \frac{35}{37}33.\newlinecosA=3537\cos A = \frac{35}{37}44.
  16. Calculate tan(AB)\tan(A-B): Take the square root of cos2A\cos^2 A to find cosA\cos A. Since AA is in Quadrant I, cosA\cos A is positive:\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}.\newlinecosA=3537\cos A = \frac{35}{37}.We know that tanB=724\tan B = \frac{7}{24}. To find cosB\cos B, we use the identity 1+tan2B=sec2B1 + \tan^2 B = \sec^2 B.\newlineFirst, find cos2A\cos^2 A00:\newlinecos2A\cos^2 A11.Calculate cos2A\cos^2 A22 and add it to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecos2A\cos^2 A55.\newlinecos2A\cos^2 A66.Add cos2A\cos^2 A77 to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecosA\cos A00.\newlinecosA\cos A11.Take the square root of cos2A\cos^2 A00 to find cosA\cos A33. Since cosA\cos A44 is in Quadrant I, cosA\cos A33 is positive:\newlinecosA\cos A66.\newlinecosA\cos A77.To find cosB\cos B, we use the reciprocal of cosA\cos A33:\newlineAA00.\newlineAA11.Calculate the reciprocal of cosA\cos A33 to find cosB\cos B:\newlineAA44.Now we have cosA=3537\cos A = \frac{35}{37}, AA66, AA44, and tanB=724\tan B = \frac{7}{24}. We can use the formula for tan(AB)\tan(A-B):\newlinecosA\cos A00.\newlineSince we have cosA\cos A11 and cosA\cos A, we can find cosA\cos A33:\newlinecosA\cos A44.\newlinecosA\cos A55.Calculate cosA\cos A33 by dividing cosA\cos A11 by cosA\cos A:\newlinecosA\cos A99.\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}00.Substitute cosA\cos A33 and cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}22 into the formula for tan(AB)\tan(A-B):\newlinecosA\cos A00.\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}55.Calculate the numerator and denominator separately:\newlineNumerator: cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}66.\newlineNumerator: cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}77.\newlineNumerator: cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}88.\newlineDenominator: cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}99.\newlineDenominator: cosA=3537\cos A = \frac{35}{37}00.\newlineDenominator: cosA=3537\cos A = \frac{35}{37}11.Now, divide the numerator by the denominator to find tan(AB)\tan(A-B):\newlinecosA=3537\cos A = \frac{35}{37}33.\newlinecosA=3537\cos A = \frac{35}{37}44.Simplify the expression by canceling out the common factor of cosA=3537\cos A = \frac{35}{37}55:\newlinecosA=3537\cos A = \frac{35}{37}66.\newlinecosA=3537\cos A = \frac{35}{37}77.
  17. Calculate tan(AB)\tan(A-B): Take the square root of cos2A\cos^2 A to find cosA\cos A. Since AA is in Quadrant I, cosA\cos A is positive:\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}.\newlinecosA=3537\cos A = \frac{35}{37}.We know that tanB=724\tan B = \frac{7}{24}. To find cosB\cos B, we use the identity 1+tan2B=sec2B1 + \tan^2 B = \sec^2 B.\newlineFirst, find cos2A\cos^2 A00:\newlinecos2A\cos^2 A11.Calculate cos2A\cos^2 A22 and add it to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecos2A\cos^2 A55.\newlinecos2A\cos^2 A66.Add cos2A\cos^2 A77 to cos2A\cos^2 A33 to find cos2A\cos^2 A00:\newlinecosA\cos A00.\newlinecosA\cos A11.Take the square root of cos2A\cos^2 A00 to find cosA\cos A33. Since cosA\cos A44 is in Quadrant I, cosA\cos A33 is positive:\newlinecosA\cos A66.\newlinecosA\cos A77.To find cosB\cos B, we use the reciprocal of cosA\cos A33:\newlineAA00.\newlineAA11.Calculate the reciprocal of cosA\cos A33 to find cosB\cos B:\newlineAA44.Now we have cosA=3537\cos A = \frac{35}{37}, AA66, AA44, and tanB=724\tan B = \frac{7}{24}. We can use the formula for tan(AB)\tan(A-B):\newlinecosA\cos A00.\newlineSince we have cosA\cos A11 and cosA\cos A, we can find cosA\cos A33:\newlinecosA\cos A44.\newlinecosA\cos A55.Calculate cosA\cos A33 by dividing cosA\cos A11 by cosA\cos A:\newlinecosA\cos A99.\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}00.Substitute cosA\cos A33 and cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}22 into the formula for tan(AB)\tan(A-B):\newlinecosA\cos A00.\newlinecosA=12251369\cos A = \sqrt{\frac{1225}{1369}}55.Calculate the numerator and denominator separately:\newlineNumerator: cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}66.\newlineNumerator: cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}77.\newlineNumerator: cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}88.\newlineDenominator: cosA=12251369\cos A = \sqrt{\frac{1225}{1369}}99.\newlineDenominator: cosA=3537\cos A = \frac{35}{37}00.\newlineDenominator: cosA=3537\cos A = \frac{35}{37}11.Now, divide the numerator by the denominator to find tan(AB)\tan(A-B):\newlinecosA=3537\cos A = \frac{35}{37}33.\newlinecosA=3537\cos A = \frac{35}{37}44.Simplify the expression by canceling out the common factor of cosA=3537\cos A = \frac{35}{37}55:\newlinecosA=3537\cos A = \frac{35}{37}66.\newlinecosA=3537\cos A = \frac{35}{37}77.Simplify the fraction to get the final answer:\newlinecosA=3537\cos A = \frac{35}{37}77.

More problems from Find trigonometric ratios using multiple identities