Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
f(x)=x+1,g(x)=-3x and 
h(x)=-f(x)+3g(x+3), then what is the value of 
h(3) ?
Answer:

Given that f(x)=x+1,g(x)=3x f(x)=x+1, g(x)=-3 x and h(x)=f(x)+3g(x+3) h(x)=-f(x)+3 g(x+3) , then what is the value of h(3) h(3) ?\newlineAnswer:

Full solution

Q. Given that f(x)=x+1,g(x)=3x f(x)=x+1, g(x)=-3 x and h(x)=f(x)+3g(x+3) h(x)=-f(x)+3 g(x+3) , then what is the value of h(3) h(3) ?\newlineAnswer:
  1. Find f(3)f(3): First, we need to find the value of f(3)f(3) since it is part of the definition of h(x)h(x).\newlinef(x)=x+1f(x) = x + 1, so f(3)=3+1f(3) = 3 + 1.\newlinef(3)=4f(3) = 4.
  2. Find g(x+3)g(x+3): Next, we need to find the value of g(x+3)g(x+3). Since g(x)=3xg(x) = -3x, we substitute xx with (x+3)(x+3) to get g(x+3)g(x+3).\newlineg(x+3)=3(x+3)=3x9.g(x+3) = -3(x+3) = -3x - 9.\newlineNow we need to find the value of g(3+3)g(3+3) which is g(6)g(6).\newlineg(6)=3(6)9.g(6) = -3(6) - 9.\newlineg(x+3)g(x+3)00\newlineg(x+3)g(x+3)11
  3. Find h(3)h(3): Now we have the values for f(3)f(3) and g(6)g(6), we can find h(3)h(3) using the definition h(x)=f(x)+3g(x+3)h(x) = -f(x) + 3g(x+3).
    h(3)=f(3)+3g(6)h(3) = -f(3) + 3g(6).
    h(3)=(4)+3(27)h(3) = -(4) + 3(-27).
    h(3)=481h(3) = -4 - 81.
    h(3)=85h(3) = -85.

More problems from Find trigonometric ratios using multiple identities