Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=7 and 
a_(n+1)=-3a_(n)+5 then find the value of 
a_(3).
Answer:

If a1=7 a_{1}=7 and an+1=3an+5 a_{n+1}=-3 a_{n}+5 then find the value of a3 a_{3} .\newlineAnswer:

Full solution

Q. If a1=7 a_{1}=7 and an+1=3an+5 a_{n+1}=-3 a_{n}+5 then find the value of a3 a_{3} .\newlineAnswer:
  1. Find a2a_{2}: We are given the first term of the sequence, a1=7a_{1}=7, and the recursive formula for the sequence, an+1=3an+5a_{n+1}=-3a_{n}+5. To find a3a_{3}, we first need to find a2a_{2} using the recursive formula.\newlineSubstitute n=1n=1 into the recursive formula to find a2a_{2}:\newlinea2=3a1+5a_{2} = -3a_{1} + 5\newlinea2=3(7)+5a_{2} = -3(7) + 5\newlinea2=21+5a_{2} = -21 + 5\newlinea1=7a_{1}=700
  2. Find a3a_{3}: Now that we have a2=16a_{2}=-16, we can use the recursive formula again to find a3a_{3}. Substitute n=2n=2 into the recursive formula to find a3a_{3}: a3=3a2+5a_{3} = -3a_{2} + 5 a3=3(16)+5a_{3} = -3(-16) + 5 a3=48+5a_{3} = 48 + 5 a3=53a_{3} = 53

More problems from Find trigonometric ratios using multiple identities