Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=9 and 
a_(n)=-4a_(n-1)+4 then find the value of 
a_(3).
Answer:

If a1=9 a_{1}=9 and an=4an1+4 a_{n}=-4 a_{n-1}+4 then find the value of a3 a_{3} .\newlineAnswer:

Full solution

Q. If a1=9 a_{1}=9 and an=4an1+4 a_{n}=-4 a_{n-1}+4 then find the value of a3 a_{3} .\newlineAnswer:
  1. Find a2a_{2}: We are given the first term of the sequence, a1=9a_{1}=9, and the recursive formula for the sequence, an=4an1+4a_{n}=-4a_{n-1}+4. To find a3a_{3}, we first need to find a2a_{2} using the recursive formula.\newlinea2=4a1+4a_{2} = -4a_{1} + 4\newlineSubstitute the value of a1a_{1} into the formula.\newlinea2=4(9)+4a_{2} = -4(9) + 4\newlineCalculate the value of a2a_{2}.\newlinea2=36+4a_{2} = -36 + 4\newlinea1=9a_{1}=900
  2. Calculate a3a_{3}: Now that we have a2a_{2}, we can use the recursive formula again to find a3a_{3}.\newlinea3=4a2+4a_{3} = -4a_{2} + 4\newlineSubstitute the value of a2a_{2} into the formula.\newlinea3=4(32)+4a_{3} = -4(-32) + 4\newlineCalculate the value of a3a_{3}.\newlinea3=128+4a_{3} = 128 + 4\newlinea3=132a_{3} = 132

More problems from Find trigonometric ratios using multiple identities