Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=7 and 
a_(n)=-2a_(n-1)-2 then find the value of 
a_(3).
Answer:

If a1=7 a_{1}=7 and an=2an12 a_{n}=-2 a_{n-1}-2 then find the value of a3 a_{3} .\newlineAnswer:

Full solution

Q. If a1=7 a_{1}=7 and an=2an12 a_{n}=-2 a_{n-1}-2 then find the value of a3 a_{3} .\newlineAnswer:
  1. Find a2a_{2}: We are given the first term of the sequence, a1=7a_{1}=7, and the recursive formula for the sequence, an=2an12a_{n}=-2a_{n-1}-2. To find a3a_{3}, we first need to find a2a_{2} using the recursive formula.\newlinea2=2a12a_{2} = -2a_{1} - 2\newline =2(7)2= -2(7) - 2\newline =142= -14 - 2\newline =16= -16
  2. Find a3a_{3}: Now that we have a2=16a_{2} = -16, we can use the recursive formula again to find a3a_{3}.\newlinea3=2a22a_{3} = -2a_{2} - 2\newline =2(16)2= -2(-16) - 2\newline =322= 32 - 2\newline =30= 30

More problems from Find trigonometric ratios using multiple identities