Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=4 and 
a_(n+1)=2a_(n)+4 then find the value of 
a_(3).
Answer:

If a1=4 a_{1}=4 and an+1=2an+4 a_{n+1}=2 a_{n}+4 then find the value of a3 a_{3} .\newlineAnswer:

Full solution

Q. If a1=4 a_{1}=4 and an+1=2an+4 a_{n+1}=2 a_{n}+4 then find the value of a3 a_{3} .\newlineAnswer:
  1. Given information: We are given the first term of the sequence, a1=4a_{1}=4, and the recursive formula for the sequence, an+1=2an+4a_{n+1}=2a_{n}+4. To find a3a_{3}, we first need to find a2a_{2}.\newlineUsing the recursive formula, we substitute n=1n=1 to find a2a_{2}:\newlinea2=2a1+4a_{2} = 2a_{1} + 4\newlinea2=2×4+4a_{2} = 2\times4 + 4\newlinea2=8+4a_{2} = 8 + 4\newlinea2=12a_{2} = 12
  2. Find a2a_{2}: Now that we have a2=12a_{2}=12, we use the recursive formula again to find a3a_{3}. We substitute n=2n=2 into the formula:\newlinea3=2a2+4a_{3} = 2a_{2} + 4\newlinea3=2×12+4a_{3} = 2\times 12 + 4\newlinea3=24+4a_{3} = 24 + 4\newlinea3=28a_{3} = 28

More problems from Find trigonometric ratios using multiple identities