Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=10 and 
a_(n)=3a_(n-1)-5 then find the value of 
a_(4).
Answer:

If a1=10 a_{1}=10 and an=3an15 a_{n}=3 a_{n-1}-5 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=10 a_{1}=10 and an=3an15 a_{n}=3 a_{n-1}-5 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given terms: We are given the first term of the sequence, a1=10a_{1} = 10, and the recursive formula an=3an15a_{n} = 3a_{n-1} - 5. To find a4a_{4}, we need to find the values of a2a_{2}, a3a_{3}, and then a4a_{4} using the recursive formula.
  2. Find a2a_{2}: First, let's find a2a_{2} using the recursive formula:\newlinea2=3a15a_{2} = 3a_{1} - 5\newlinea2=3(10)5a_{2} = 3(10) - 5\newlinea2=305a_{2} = 30 - 5\newlinea2=25a_{2} = 25
  3. Find a3a_{3}: Next, we'll find a3a_{3} using the value of a2a_{2}:
    a3=3a25a_{3} = 3a_{2} - 5
    a3=3(25)5a_{3} = 3(25) - 5
    a3=755a_{3} = 75 - 5
    a3=70a_{3} = 70
  4. Find a4a_{4}: Finally, we can find a4a_{4} using the value of a3a_{3}:
    a4=3a35a_{4} = 3a_{3} - 5
    a4=3(70)5a_{4} = 3(70) - 5
    a4=2105a_{4} = 210 - 5
    a4=205a_{4} = 205

More problems from Find trigonometric ratios using multiple identities