Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=3 and 
a_(n+1)=3a_(n)+5 then find the value of 
a_(4).
Answer:

If a1=3 a_{1}=3 and an+1=3an+5 a_{n+1}=3 a_{n}+5 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=3 a_{1}=3 and an+1=3an+5 a_{n+1}=3 a_{n}+5 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given terms: We are given the first term of the sequence, a1=3a_{1} = 3, and the recursive formula for the sequence, an+1=3an+5a_{n+1} = 3a_{n} + 5. To find a4a_{4}, we need to find a2a_{2}, a3a_{3}, and then a4a_{4} using the recursive formula.
  2. Find a2a_{2}: First, let's find a2a_{2} using the recursive formula:\newlinea2=3a1+5a_{2} = 3a_{1} + 5\newlinea2=3×3+5a_{2} = 3 \times 3 + 5\newlinea2=9+5a_{2} = 9 + 5\newlinea2=14a_{2} = 14
  3. Find a3a_{3}: Next, we'll find a3a_{3} using the recursive formula and the value of a2a_{2} we just found:\newlinea3=3a2+5a_{3} = 3a_{2} + 5\newlinea3=3×14+5a_{3} = 3 \times 14 + 5\newlinea3=42+5a_{3} = 42 + 5\newlinea3=47a_{3} = 47
  4. Find a4a_{4}: Finally, we'll find a4a_{4} using the recursive formula and the value of a3a_{3}:a4=3a3+5a_{4} = 3a_{3} + 5a4=3×47+5a_{4} = 3 \times 47 + 5a4=141+5a_{4} = 141 + 5a4=146a_{4} = 146

More problems from Find trigonometric ratios using multiple identities