Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=0,a_(2)=2 and 
a_(n)=a_(n-1)+3a_(n-2) then find the value of 
a_(4).
Answer:

If a1=0,a2=2 a_{1}=0, a_{2}=2 and an=an1+3an2 a_{n}=a_{n-1}+3 a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=0,a2=2 a_{1}=0, a_{2}=2 and an=an1+3an2 a_{n}=a_{n-1}+3 a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:
  1. Given Sequence and Formula: We are given the first two terms of the sequence: a1=0a_{1}=0 and a2=2a_{2}=2. We also have the recursive formula an=an1+3an2a_{n}=a_{n-1}+3a_{n-2}. To find a4a_{4}, we first need to find a3a_{3} using the recursive formula.
  2. Calculate a3a_{3}: Using the recursive formula, let's calculate a3a_{3}:a3=a31+3a32a_{3} = a_{3-1} + 3a_{3-2}=a2+3a1= a_{2} + 3a_{1}=2+3(0)= 2 + 3(0)=2+0= 2 + 0=2= 2We have found that a3=2a_{3} = 2.
  3. Calculate a4a_{4}: Now we can use the values of a2a_{2} and a3a_{3} to find a4a_{4} using the same recursive formula:\newlinea4=a41+3a42a_{4} = a_{4-1} + 3a_{4-2}\newline =a3+3a2= a_{3} + 3a_{2}\newline =2+3(2)= 2 + 3(2)\newline =2+6= 2 + 6\newline =8= 8\newlineWe have found that a4=8a_{4} = 8.

More problems from Find trigonometric ratios using multiple identities