Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=9 and 
a_(n+1)=4a_(n)+4 then find the value of 
a_(3).
Answer:

If a1=9 a_{1}=9 and an+1=4an+4 a_{n+1}=4 a_{n}+4 then find the value of a3 a_{3} .\newlineAnswer:

Full solution

Q. If a1=9 a_{1}=9 and an+1=4an+4 a_{n+1}=4 a_{n}+4 then find the value of a3 a_{3} .\newlineAnswer:
  1. Find a2a_{2}: We are given the first term of the sequence, a1=9a_{1}=9, and the recursive formula for the sequence, an+1=4an+4a_{n+1}=4a_{n}+4. To find a3a_{3}, we first need to find a2a_{2} using the recursive formula.\newlineSubstitute n=1n=1 into the recursive formula to find a2a_{2}:\newlinea2=4a1+4a_{2} = 4a_{1} + 4\newlinea2=4(9)+4a_{2} = 4(9) + 4\newlinea2=36+4a_{2} = 36 + 4\newlinea1=9a_{1}=900
  2. Find a3a_{3}: Now that we have a2a_{2}, we can use it to find a3a_{3} by substituting n=2n=2 into the recursive formula:\newlinea3=4a2+4a_{3} = 4a_{2} + 4\newlinea3=4(40)+4a_{3} = 4(40) + 4\newlinea3=160+4a_{3} = 160 + 4\newlinea3=164a_{3} = 164

More problems from Find trigonometric ratios using multiple identities