Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=1 and 
a_(n)=3a_(n-1)+2 then find the value of 
a_(5).
Answer:

If a1=1 a_{1}=1 and an=3an1+2 a_{n}=3 a_{n-1}+2 then find the value of a5 a_{5} .\newlineAnswer:

Full solution

Q. If a1=1 a_{1}=1 and an=3an1+2 a_{n}=3 a_{n-1}+2 then find the value of a5 a_{5} .\newlineAnswer:
  1. Given Information: We are given the first term of the sequence, a1=1a_{1} = 1, and the recursive formula an=3an1+2a_{n} = 3a_{n-1} + 2. To find a5a_{5}, we need to find the values of a2a_{2}, a3a_{3}, a4a_{4}, and then a5a_{5} using the recursive formula.
  2. Find a2a_{2}: First, let's find a2a_{2} using the recursive formula:\newlinea2=3a1+2=3(1)+2=3+2=5a_{2} = 3a_{1} + 2 = 3(1) + 2 = 3 + 2 = 5.
  3. Find a3a_{3}: Next, we find a3a_{3} using the value of a2a_{2}:a3=3a2+2=3(5)+2=15+2=17a_{3} = 3a_{2} + 2 = 3(5) + 2 = 15 + 2 = 17.
  4. Find a4a_{4}: Now, we find a4a_{4} using the value of a3a_{3}:\newlinea4=3a3+2=3(17)+2=51+2=53a_{4} = 3a_{3} + 2 = 3(17) + 2 = 51 + 2 = 53.
  5. Find a5a_{5}: Finally, we find a5a_{5} using the value of a4a_{4}:\newlinea5=3a4+2=3(53)+2=159+2=161a_{5} = 3a_{4} + 2 = 3(53) + 2 = 159 + 2 = 161.

More problems from Find trigonometric ratios using multiple identities