Q. If a1=1 and an=3an−1+2 then find the value of a5.Answer:
Given Information: We are given the first term of the sequence, a1=1, and the recursive formula an=3an−1+2. To find a5, we need to find the values of a2, a3, a4, and then a5 using the recursive formula.
Find a2: First, let's find a2 using the recursive formula:a2=3a1+2=3(1)+2=3+2=5.
Find a3: Next, we find a3 using the value of a2:a3=3a2+2=3(5)+2=15+2=17.
Find a4: Now, we find a4 using the value of a3:a4=3a3+2=3(17)+2=51+2=53.
Find a5: Finally, we find a5 using the value of a4:a5=3a4+2=3(53)+2=159+2=161.
More problems from Find trigonometric ratios using multiple identities