Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
tan A=(60)/(11) and 
sin B=(3)/(5) and angles A and B are in Quadrant I, find the value of 
tan(A+B).
Answer:

If tanA=6011 \tan A=\frac{60}{11} and sinB=35 \sin B=\frac{3}{5} and angles A and B are in Quadrant I, find the value of tan(A+B) \tan (A+B) .\newlineAnswer:

Full solution

Q. If tanA=6011 \tan A=\frac{60}{11} and sinB=35 \sin B=\frac{3}{5} and angles A and B are in Quadrant I, find the value of tan(A+B) \tan (A+B) .\newlineAnswer:
  1. Given Tangent Formula: We know that the tangent of a sum of two angles AA and BB is given by the formula:\newlinetan(A+B)=tanA+tanB1tanAtanB\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}.\newlineWe are given tanA=6011\tan A = \frac{60}{11}. We need to find tanB\tan B to use this formula.
  2. Find Tangent B: To find tanB\tan B, we need to use the identity sin2B+cos2B=1\sin^2 B + \cos^2 B = 1 to find cosB\cos B, since tanB=sinBcosB\tan B = \frac{\sin B}{\cos B}.\newlineWe are given sinB=35\sin B = \frac{3}{5}. Let's find cosB\cos B.\newline(sinB)2+(cosB)2=1(\sin B)^2 + (\cos B)^2 = 1\newline(35)2+(cosB)2=1\left(\frac{3}{5}\right)^2 + (\cos B)^2 = 1\newline925+(cosB)2=1\frac{9}{25} + (\cos B)^2 = 1
  3. Use Trigonometric Identity: Subtract 925\frac{9}{25} from both sides to isolate (cosB)2(\cos B)^2.\newline(cosB)2=1925(\cos B)^2 = 1 - \frac{9}{25}\newline(cosB)2=1625(\cos B)^2 = \frac{16}{25}\newlineSince BB is in Quadrant I, where cosine is positive, we take the positive square root.\newlinecosB=1625\cos B = \sqrt{\frac{16}{25}}\newlinecosB=45\cos B = \frac{4}{5}
  4. Calculate Tangent B: Now we can find tanB\tan B using sinB\sin B and cosB\cos B.tanB=sinBcosB\tan B = \frac{\sin B}{\cos B}tanB=3/54/5\tan B = \frac{3/5}{4/5}tanB=34\tan B = \frac{3}{4}
  5. Calculate Tangent A+B: We can now use the values of tanAtan A and tanBtan B to find tan(A+B)tan(A+B).tan(A+B)=tanA+tanB1tanAtanBtan(A+B) = \frac{tan A + tan B}{1 - tan A \cdot tan B}tan(A+B)=6011+341(601134)tan(A+B) = \frac{\frac{60}{11} + \frac{3}{4}}{1 - (\frac{60}{11} \cdot \frac{3}{4})}
  6. Find Common Denominator: First, we need to find a common denominator to add 6011\frac{60}{11} and 34\frac{3}{4}. The common denominator is 4444. tan(A+B)=(601144+341111)/(1601134)\tan(A+B) = \left(\frac{60}{11}\cdot\frac{4}{4} + \frac{3}{4}\cdot\frac{11}{11}\right) / \left(1 - \frac{60}{11} \cdot \frac{3}{4}\right) tan(A+B)=(24044+3344)/(118044)\tan(A+B) = \left(\frac{240}{44} + \frac{33}{44}\right) / \left(1 - \frac{180}{44}\right)
  7. Simplify Numerators: Now we add the numerators and simplify the expression.\newlinetan(A+B)=240+3344/(118044)\tan(A+B) = \frac{240 + 33}{44} / \left(1 - \frac{180}{44}\right)\newlinetan(A+B)=27344/(118044)\tan(A+B) = \frac{273}{44} / \left(1 - \frac{180}{44}\right)
  8. Simplify Denominator: Next, we simplify the denominator.\newline118044=4444180441 - \frac{180}{44} = \frac{44}{44} - \frac{180}{44}\newline118044=136441 - \frac{180}{44} = -\frac{136}{44}\newline118044=34111 - \frac{180}{44} = -\frac{34}{11} (simplifying by dividing both numerator and denominator by 44)
  9. Divide Numerators: Now we can divide the numerators by the denominator.\newlinetan(A+B)=27344/3411\tan(A+B) = \frac{273}{44} / \frac{-34}{11}\newlineTo divide by a fraction, we multiply by its reciprocal.\newlinetan(A+B)=27344×1134\tan(A+B) = \frac{273}{44} \times \frac{11}{-34}
  10. Final Calculation: Multiply the numerators and the denominators.\newlinetan(A+B)=273×1144×34\tan(A+B) = \frac{273 \times 11}{44 \times -34}\newlinetan(A+B)=30031496\tan(A+B) = \frac{3003}{-1496}\newlinetan(A+B)=30031496\tan(A+B) = -\frac{3003}{1496} (it is conventional to write negative sign in the numerator)

More problems from Find trigonometric ratios using multiple identities