Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=9 and 
f(n)=nf(n-1)-2 then find the value of 
f(5).
Answer:

If f(1)=9 f(1)=9 and f(n)=nf(n1)2 f(n)=n f(n-1)-2 then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=9 f(1)=9 and f(n)=nf(n1)2 f(n)=n f(n-1)-2 then find the value of f(5) f(5) .\newlineAnswer:
  1. Given f(1)f(1): We are given f(1)=9f(1) = 9 and the recursive formula f(n)=nf(n1)2f(n) = nf(n-1) - 2. To find f(5)f(5), we need to find the values of f(2)f(2), f(3)f(3), and f(4)f(4) first, using the recursive formula.
  2. Find f(2)f(2): Let's find f(2)f(2) using the formula:\newlinef(2)=2f(1)2=2(9)2=182=16f(2) = 2f(1) - 2 = 2(9) - 2 = 18 - 2 = 16.
  3. Find f(3)f(3): Next, we find f(3)f(3) using the value of f(2)f(2):f(3)=3f(2)2=3(16)2=482=46f(3) = 3f(2) - 2 = 3(16) - 2 = 48 - 2 = 46.
  4. Find f(4)f(4): Now, we find f(4)f(4) using the value of f(3)f(3):f(4)=4f(3)2=4(46)2=1842=182f(4) = 4f(3) - 2 = 4(46) - 2 = 184 - 2 = 182.
  5. Find f(5)f(5): Finally, we find f(5)f(5) using the value of f(4)f(4):f(5)=5f(4)2=5(182)2=9102=908f(5) = 5f(4) - 2 = 5(182) - 2 = 910 - 2 = 908.

More problems from Find trigonometric ratios using multiple identities