Q. If f(1)=9 and f(n)=nf(n−1)−2 then find the value of f(5).Answer:
Given f(1): We are given f(1)=9 and the recursive formula f(n)=nf(n−1)−2. To find f(5), we need to find the values of f(2), f(3), and f(4) first, using the recursive formula.
Find f(2): Let's find f(2) using the formula:f(2)=2f(1)−2=2(9)−2=18−2=16.
Find f(3): Next, we find f(3) using the value of f(2):f(3)=3f(2)−2=3(16)−2=48−2=46.
Find f(4): Now, we find f(4) using the value of f(3):f(4)=4f(3)−2=4(46)−2=184−2=182.
Find f(5): Finally, we find f(5) using the value of f(4):f(5)=5f(4)−2=5(182)−2=910−2=908.
More problems from Find trigonometric ratios using multiple identities