Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=8 and 
a_(n)=-4a_(n-1)-n then find the value of 
a_(4).
Answer:

If a1=8 a_{1}=8 and an=4an1n a_{n}=-4 a_{n-1}-n then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=8 a_{1}=8 and an=4an1n a_{n}=-4 a_{n-1}-n then find the value of a4 a_{4} .\newlineAnswer:
  1. Given Information: We are given the first term of the sequence, a1=8a_{1}=8, and the recursive formula for the sequence, an=4an1na_{n}=-4a_{n-1}-n. To find a4a_{4}, we need to find the values of a2a_{2} and a3a_{3} first.
  2. Find a2a_{2}: Let's find a2a_{2} using the recursive formula:\newlinea2=4a12a_{2} = -4a_{1} - 2\newlinea2=4(8)2a_{2} = -4(8) - 2\newlinea2=322a_{2} = -32 - 2\newlinea2=34a_{2} = -34
  3. Find a3a_{3}: Now, let's find a3a_{3} using the recursive formula:\newlinea3=4a23a_{3} = -4a_{2} - 3\newlinea3=4(34)3a_{3} = -4(-34) - 3\newlinea3=1363a_{3} = 136 - 3\newlinea3=133a_{3} = 133
  4. Find a4a_{4}: Finally, we can find a4a_{4} using the recursive formula:\newlinea4=4a34a_{4} = -4a_{3} - 4\newlinea4=4(133)4a_{4} = -4(133) - 4\newlinea4=5324a_{4} = -532 - 4\newlinea4=536a_{4} = -536

More problems from Find trigonometric ratios using multiple identities