Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
f(x)=2x,g(x)=x-2 and 
h(x)=-3f(x+3)-g(x), then what is the value of 
h(1) ?
Answer:

Given that f(x)=2x,g(x)=x2 f(x)=2 x, g(x)=x-2 and h(x)=3f(x+3)g(x) h(x)=-3 f(x+3)-g(x) , then what is the value of h(1) h(1) ?\newlineAnswer:

Full solution

Q. Given that f(x)=2x,g(x)=x2 f(x)=2 x, g(x)=x-2 and h(x)=3f(x+3)g(x) h(x)=-3 f(x+3)-g(x) , then what is the value of h(1) h(1) ?\newlineAnswer:
  1. Write Functions Given: First, let's write down the functions given:\newlinef(x)=2xf(x) = 2x\newlineg(x)=x2g(x) = x - 2\newlineh(x)=3f(x+3)g(x)h(x) = -3f(x + 3) - g(x)\newlineWe need to find the value of h(1)h(1).
  2. Find f(4)f(4): Now, let's find the value of f(x+3)f(x + 3) when x=1x = 1.\newlinef(1+3)=f(4)=2×4=8f(1 + 3) = f(4) = 2 \times 4 = 8
  3. Calculate g(1)g(1): Next, we calculate the value of g(x)g(x) when x=1x = 1.\newlineg(1)=12=1g(1) = 1 - 2 = -1
  4. Substitute Values into h(x)h(x): Now we can substitute the values of f(4)f(4) and g(1)g(1) into the equation for h(x)h(x) to find h(1)h(1).
    h(1)=3f(1+3)g(1)h(1) = -3f(1 + 3) - g(1)
    h(1)=3×8(1)h(1) = -3 \times 8 - (-1)
    h(1)=24+1h(1) = -24 + 1
  5. Simplify to Find h(1)h(1): Finally, we simplify the expression to find the value of h(1)h(1).\newlineh(1)=24+1=23h(1) = -24 + 1 = -23

More problems from Find trigonometric ratios using multiple identities