Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=1 and 
a_(n)=3a_(n-1)-n then find the value of 
a_(5).
Answer:

If a1=1 a_{1}=1 and an=3an1n a_{n}=3 a_{n-1}-n then find the value of a5 a_{5} .\newlineAnswer:

Full solution

Q. If a1=1 a_{1}=1 and an=3an1n a_{n}=3 a_{n-1}-n then find the value of a5 a_{5} .\newlineAnswer:
  1. Given Sequence and Formula: We are given the first term of the sequence, a1=1a_{1} = 1, and the recursive formula an=3an1na_{n} = 3a_{n-1} - n. To find a5a_{5}, we need to find the values of a2a_{2}, a3a_{3}, a4a_{4}, and then a5a_{5} using the recursive formula.
  2. Find a2a_{2}: First, let's find a2a_{2} using the recursive formula:\newlinea2=3a12a_{2} = 3a_{1} - 2\newlinea2=3(1)2a_{2} = 3(1) - 2\newlinea2=32a_{2} = 3 - 2\newlinea2=1a_{2} = 1
  3. Find a3a_{3}: Next, we find a3a_{3} using the value of a2a_{2}:a3=3a23a_{3} = 3a_{2} - 3a3=3(1)3a_{3} = 3(1) - 3a3=33a_{3} = 3 - 3a3=0a_{3} = 0
  4. Calculate a4a_{4}: Now, we calculate a4a_{4} using the value of a3a_{3}:a4=3a34a_{4} = 3a_{3} - 4a4=3(0)4a_{4} = 3(0) - 4a4=04a_{4} = 0 - 4a4=4a_{4} = -4
  5. Find a5a_{5}: Finally, we find a5a_{5} using the value of a4a_{4}:
    a5=3a45a_{5} = 3a_{4} - 5
    a5=3(4)5a_{5} = 3(-4) - 5
    a5=125a_{5} = -12 - 5
    a5=17a_{5} = -17

More problems from Find trigonometric ratios using multiple identities