Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=10 and 
a_(n+1)=-3a_(n)+5 then find the value of 
a_(4).
Answer:

If a1=10 a_{1}=10 and an+1=3an+5 a_{n+1}=-3 a_{n}+5 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=10 a_{1}=10 and an+1=3an+5 a_{n+1}=-3 a_{n}+5 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given Information: We are given the first term of the sequence, a1=10a_{1}=10, and the recursive formula an+1=3an+5a_{n+1}=-3a_{n}+5. To find a4a_{4}, we need to find a2a_{2}, a3a_{3}, and then a4a_{4} using the recursive formula.
  2. Find a2a_{2}: First, let's find a2a_{2} using the recursive formula with n=1n=1.
    a2=3a1+5a_{2} = -3a_{1} + 5
    a2=3(10)+5a_{2} = -3(10) + 5
    a2=30+5a_{2} = -30 + 5
    a2=25a_{2} = -25
  3. Find a3a_{3}: Next, we'll find a3a_{3} using the recursive formula with n=2n=2.\newlinea3=3a2+5a_{3} = -3a_{2} + 5\newlinea3=3(25)+5a_{3} = -3(-25) + 5\newlinea3=75+5a_{3} = 75 + 5\newlinea3=80a_{3} = 80
  4. Find a4a_{4}: Finally, we'll find a4a_{4} using the recursive formula with n=3n=3.\newlinea4=3a3+5a_{4} = -3a_{3} + 5\newlinea4=3(80)+5a_{4} = -3(80) + 5\newlinea4=240+5a_{4} = -240 + 5\newlinea4=235a_{4} = -235

More problems from Find trigonometric ratios using multiple identities