Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 2
Find trigonometric ratios using multiple identities
If
tan
(
x
)
=
5
6
\tan (x)=\frac{5}{6}
tan
(
x
)
=
6
5
(in Quadrant-I), find
\newline
cos
(
2
x
)
=
\cos (2 x)=
cos
(
2
x
)
=
Get tutor help
Let
h
h
h
be a differentiable function such that
h
(
−
5
)
=
10
h(-5)=10
h
(
−
5
)
=
10
and
h
′
(
x
)
=
2
−
e
x
+
2
x
2
h^{\prime}(x)=2-\sqrt{e^{x}+2 x^{2}}
h
′
(
x
)
=
2
−
e
x
+
2
x
2
.
\newline
What is the value of
h
(
1
)
h(1)
h
(
1
)
? Use a graphing calculator and round your answer to three decimal places.
Get tutor help
The questions below are posed in order to help you think about how to find the number of degrees in
19
π
18
\frac{19 \pi}{18}
18
19
π
radians.
\newline
What fraction of a semicircle is an angle that measures
19
π
18
\frac{19 \pi}{18}
18
19
π
radians? Express your answer as a fraction in simplest terms.
Get tutor help
The questions below are posed in order to help you think about how to find the number of degrees in
4
π
3
\frac{4 \pi}{3}
3
4
π
radians.
\newline
What fraction of a semicircle is an angle that measures
4
π
3
\frac{4 \pi}{3}
3
4
π
radians? Express your answer as a fraction in simplest terms.
Get tutor help
u
⃗
=
(
7
,
−
4
)
\vec{u}=(7,-4)
u
=
(
7
,
−
4
)
\newline
Find the direction angle of
u
⃗
\vec{u}
u
.
\newline
Enter your answer as an angle in degrees between
0
∘
0^{\circ}
0
∘
and
36
0
∘
360^{\circ}
36
0
∘
rounded to the nearest hundredth.
\newline
θ
=
□
°
\theta= \square \degree
θ
=
□
°
\newline
Get tutor help
Given that
sin
A
=
22
5
\sin A=\frac{\sqrt{22}}{5}
sin
A
=
5
22
and
sin
B
=
7
3
\sin B=\frac{\sqrt{7}}{3}
sin
B
=
3
7
, and that angles
A
A
A
and
B
B
B
are both in Quadrant I, find the exact value of
cos
(
A
−
B
)
\cos (A-B)
cos
(
A
−
B
)
, in simplest radical form.
\newline
Answer:
Get tutor help
Given that
tan
x
=
1
3
\tan x=\frac{1}{\sqrt{3}}
tan
x
=
3
1
and
cos
y
=
5
5
\cos y=\frac{\sqrt{5}}{5}
cos
y
=
5
5
, and that angles
x
x
x
and
y
y
y
are both in Quadrant I, find the exact value of
cos
(
x
+
y
)
\cos (x+y)
cos
(
x
+
y
)
, in simplest radical form.
\newline
Answer:
Get tutor help
Given that
sin
A
=
7
6
\sin A=\frac{\sqrt{7}}{6}
sin
A
=
6
7
and
tan
B
=
3
\tan B=\sqrt{3}
tan
B
=
3
, and that angles
A
A
A
and
B
B
B
are both in Quadrant I, find the exact value of
cos
(
A
−
B
)
\cos (A-B)
cos
(
A
−
B
)
, in simplest radical form.
\newline
Answer:
Get tutor help
Given that
tan
x
=
6
\tan x=6
tan
x
=
6
and
cos
y
=
3
13
\cos y=\frac{3}{\sqrt{13}}
cos
y
=
13
3
, and that angles
x
x
x
and
y
y
y
are both in Quadrant I, find the exact value of
cos
(
x
+
y
)
\cos (x+y)
cos
(
x
+
y
)
, in simplest radical form.
\newline
Answer:
Get tutor help
Given that
tan
x
=
3
2
\tan x=\frac{3}{2}
tan
x
=
2
3
and
cos
y
=
6
37
\cos y=\frac{6}{\sqrt{37}}
cos
y
=
37
6
, and that angles
x
x
x
and
y
y
y
are both in Quadrant I, find the exact value of
sin
(
x
−
y
)
\sin (x-y)
sin
(
x
−
y
)
, in simplest radical form.
\newline
Answer:
Get tutor help
Given that
tan
x
=
2
5
\tan x=\frac{2}{\sqrt{5}}
tan
x
=
5
2
and
sin
y
=
4
5
\sin y=\frac{4}{5}
sin
y
=
5
4
, and that angles
x
x
x
and
y
y
y
are both in Quadrant I, find the exact value of
cos
(
x
+
y
)
\cos (x+y)
cos
(
x
+
y
)
, in simplest radical form.
\newline
Answer:
Get tutor help
Given that
cos
x
=
4
5
\cos x=\frac{4}{5}
cos
x
=
5
4
and
sin
y
=
8
3
\sin y=\frac{\sqrt{8}}{3}
sin
y
=
3
8
, and that angles
x
x
x
and
y
y
y
are both in Quadrant I, find the exact value of
sin
(
x
+
y
)
\sin (x+y)
sin
(
x
+
y
)
, in simplest radical form.
\newline
Answer:
Get tutor help
Given that
cos
x
=
5
5
\cos x=\frac{\sqrt{5}}{5}
cos
x
=
5
5
and
sin
y
=
1
3
\sin y=\frac{1}{3}
sin
y
=
3
1
, and that angles
x
x
x
and
y
y
y
are both in Quadrant I, find the exact value of
sin
(
x
+
y
)
\sin (x+y)
sin
(
x
+
y
)
, in simplest radical form.
\newline
Answer:
Get tutor help
Given that
sin
A
=
6
61
\sin A=\frac{6}{\sqrt{61}}
sin
A
=
61
6
and
cos
B
=
1
2
\cos B=\frac{1}{\sqrt{2}}
cos
B
=
2
1
, and that angles
A
A
A
and
B
B
B
are both in Quadrant I, find the exact value of
cos
(
A
−
B
)
\cos (A-B)
cos
(
A
−
B
)
, in simplest radical form.
\newline
Answer:
Get tutor help
If
cos
A
=
35
37
\cos A=\frac{35}{37}
cos
A
=
37
35
and
sin
B
=
28
53
\sin B=\frac{28}{53}
sin
B
=
53
28
and angles A and B are in Quadrant I, find the value of
tan
(
A
+
B
)
\tan (A+B)
tan
(
A
+
B
)
.
\newline
Answer:
Get tutor help
Given that
cos
A
=
23
5
\cos A=\frac{\sqrt{23}}{5}
cos
A
=
5
23
and
sin
B
=
21
6
\sin B=\frac{\sqrt{21}}{6}
sin
B
=
6
21
, and that angles
A
A
A
and
B
B
B
are both in Quadrant I, find the exact value of
sin
(
A
+
B
)
\sin (A+B)
sin
(
A
+
B
)
, in simplest radical form.
\newline
Answer:
Get tutor help
If
cos
A
=
21
29
\cos A=\frac{21}{29}
cos
A
=
29
21
and
tan
B
=
5
12
\tan B=\frac{5}{12}
tan
B
=
12
5
and angles A and B are in Quadrant I, find the value of
tan
(
A
+
B
)
\tan (A+B)
tan
(
A
+
B
)
.
\newline
Answer:
Get tutor help
If
cos
A
=
28
53
\cos A=\frac{28}{53}
cos
A
=
53
28
and
tan
B
=
5
12
\tan B=\frac{5}{12}
tan
B
=
12
5
and angles A and B are in Quadrant I, find the value of
tan
(
A
+
B
)
\tan (A+B)
tan
(
A
+
B
)
.
\newline
Answer:
Get tutor help
If
sin
A
=
20
29
\sin A=\frac{20}{29}
sin
A
=
29
20
and
cos
B
=
28
53
\cos B=\frac{28}{53}
cos
B
=
53
28
and angles A and B are in Quadrant I, find the value of
tan
(
A
−
B
)
\tan (A-B)
tan
(
A
−
B
)
.
\newline
Answer:
Get tutor help
If
tan
A
=
24
7
\tan A=\frac{24}{7}
tan
A
=
7
24
and
cos
B
=
12
37
\cos B=\frac{12}{37}
cos
B
=
37
12
and angles A and B are in Quadrant I, find the value of
tan
(
A
−
B
)
\tan (A-B)
tan
(
A
−
B
)
.
\newline
Answer:
Get tutor help
If
tan
A
=
35
12
\tan A=\frac{35}{12}
tan
A
=
12
35
and
cos
B
=
5
13
\cos B=\frac{5}{13}
cos
B
=
13
5
and angles A and B are in Quadrant I, find the value of
tan
(
A
+
B
)
\tan (A+B)
tan
(
A
+
B
)
.
\newline
Answer:
Get tutor help
If
sin
A
=
35
37
\sin A=\frac{35}{37}
sin
A
=
37
35
and
cos
B
=
8
17
\cos B=\frac{8}{17}
cos
B
=
17
8
and angles A and B are in Quadrant I, find the value of
tan
(
A
+
B
)
\tan (A+B)
tan
(
A
+
B
)
.
\newline
Answer:
Get tutor help
If
sin
A
=
9
41
\sin A=\frac{9}{41}
sin
A
=
41
9
and
cos
B
=
21
29
\cos B=\frac{21}{29}
cos
B
=
29
21
and angles A and B are in Quadrant I, find the value of
tan
(
A
−
B
)
\tan (A-B)
tan
(
A
−
B
)
.
\newline
Answer:
Get tutor help
If
tan
A
=
4
3
\tan A=\frac{4}{3}
tan
A
=
3
4
and
cos
B
=
8
17
\cos B=\frac{8}{17}
cos
B
=
17
8
and angles A and B are in Quadrant I, find the value of
tan
(
A
+
B
)
\tan (A+B)
tan
(
A
+
B
)
.
\newline
Answer:
Get tutor help
If
cos
A
=
9
41
\cos A=\frac{9}{41}
cos
A
=
41
9
and
tan
B
=
5
12
\tan B=\frac{5}{12}
tan
B
=
12
5
and angles A and B are in Quadrant I, find the value of
tan
(
A
−
B
)
\tan (A-B)
tan
(
A
−
B
)
.
\newline
Answer:
Get tutor help
Given that
sin
x
=
3
58
\sin x=\frac{3}{\sqrt{58}}
sin
x
=
58
3
and
tan
y
=
1
\tan y=1
tan
y
=
1
, and that angles
x
x
x
and
y
y
y
are both in Quadrant I, find the exact value of
cos
(
x
−
y
)
\cos (x-y)
cos
(
x
−
y
)
, in simplest radical form.
\newline
Answer:
Get tutor help
Given that
sin
x
=
1
26
\sin x=\frac{1}{\sqrt{26}}
sin
x
=
26
1
and
sin
y
=
1
5
\sin y=\frac{1}{\sqrt{5}}
sin
y
=
5
1
, and that angles
x
x
x
and
y
y
y
are both in Quadrant I, find the exact value of
sin
(
x
+
y
)
\sin (x+y)
sin
(
x
+
y
)
, in simplest radical form.
\newline
Answer:
Get tutor help
Given that
tan
A
=
2
\tan A=2
tan
A
=
2
and
sin
B
=
5
41
\sin B=\frac{5}{\sqrt{41}}
sin
B
=
41
5
, and that angles
A
A
A
and
B
B
B
are both in Quadrant I, find the exact value of
sin
(
A
−
B
)
\sin (A-B)
sin
(
A
−
B
)
, in simplest radical form.
\newline
Answer:
Get tutor help
Given that
sin
x
=
1
2
\sin x=\frac{1}{\sqrt{2}}
sin
x
=
2
1
and
cos
y
=
3
10
\cos y=\frac{3}{\sqrt{10}}
cos
y
=
10
3
, and that angles
x
x
x
and
y
y
y
are both in Quadrant I, find the exact value of
sin
(
x
−
y
)
\sin (x-y)
sin
(
x
−
y
)
, in simplest radical form.
\newline
Answer:
Get tutor help
Given that
tan
x
=
1
3
\tan x=\frac{1}{\sqrt{3}}
tan
x
=
3
1
and
sin
y
=
28
6
\sin y=\frac{\sqrt{28}}{6}
sin
y
=
6
28
, and that angles
x
x
x
and
y
y
y
are both in Quadrant I, find the exact value of
cos
(
x
+
y
)
\cos (x+y)
cos
(
x
+
y
)
, in simplest radical form.
\newline
Answer:
Get tutor help
If
tan
A
=
35
12
\tan A=\frac{35}{12}
tan
A
=
12
35
and
cos
B
=
21
29
\cos B=\frac{21}{29}
cos
B
=
29
21
and angles A and B are in Quadrant I, find the value of
tan
(
A
+
B
)
\tan (A+B)
tan
(
A
+
B
)
.
\newline
Answer:
Get tutor help
If
cos
A
=
7
25
\cos A=\frac{7}{25}
cos
A
=
25
7
and
tan
B
=
3
4
\tan B=\frac{3}{4}
tan
B
=
4
3
and angles A and B are in Quadrant I, find the value of
tan
(
A
+
B
)
\tan (A+B)
tan
(
A
+
B
)
.
\newline
Answer:
Get tutor help
If
sin
A
=
40
41
\sin A=\frac{40}{41}
sin
A
=
41
40
and
cos
B
=
20
29
\cos B=\frac{20}{29}
cos
B
=
29
20
and angles A and B are in Quadrant I, find the value of
tan
(
A
−
B
)
\tan (A-B)
tan
(
A
−
B
)
.
\newline
Answer:
Get tutor help
If
cos
A
=
21
29
\cos A=\frac{21}{29}
cos
A
=
29
21
and
tan
B
=
9
40
\tan B=\frac{9}{40}
tan
B
=
40
9
and angles A and B are in Quadrant I, find the value of
tan
(
A
−
B
)
\tan (A-B)
tan
(
A
−
B
)
.
\newline
Answer:
Get tutor help
If
sin
A
=
11
61
\sin A=\frac{11}{61}
sin
A
=
61
11
and
cos
B
=
20
29
\cos B=\frac{20}{29}
cos
B
=
29
20
and angles A and B are in Quadrant I, find the value of
tan
(
A
−
B
)
\tan (A-B)
tan
(
A
−
B
)
.
\newline
Answer:
Get tutor help
If
tan
A
=
12
35
\tan A=\frac{12}{35}
tan
A
=
35
12
and
cos
B
=
15
17
\cos B=\frac{15}{17}
cos
B
=
17
15
and angles A and B are in Quadrant I, find the value of
tan
(
A
−
B
)
\tan (A-B)
tan
(
A
−
B
)
.
\newline
Answer:
Get tutor help
If
tan
A
=
40
9
\tan A=\frac{40}{9}
tan
A
=
9
40
and
sin
B
=
15
17
\sin B=\frac{15}{17}
sin
B
=
17
15
and angles A and B are in Quadrant I, find the value of
tan
(
A
+
B
)
\tan (A+B)
tan
(
A
+
B
)
.
\newline
Answer:
Get tutor help
If
tan
A
=
12
5
\tan A=\frac{12}{5}
tan
A
=
5
12
and
cos
B
=
8
17
\cos B=\frac{8}{17}
cos
B
=
17
8
and angles A and B are in Quadrant I, find the value of
tan
(
A
−
B
)
\tan (A-B)
tan
(
A
−
B
)
.
\newline
Answer:
Get tutor help
Given that
tan
x
=
3
\tan x=\sqrt{3}
tan
x
=
3
and
tan
y
=
3
7
\tan y=\frac{3}{\sqrt{7}}
tan
y
=
7
3
, and that angles
x
x
x
and
y
y
y
are both in Quadrant I, find the exact value of
sin
(
x
−
y
)
\sin (x-y)
sin
(
x
−
y
)
, in simplest radical form.
\newline
Answer:
Get tutor help
Point
F
\mathrm{F}
F
is located at
−
11
-11
−
11
. Point
G
\mathrm{G}
G
is
9
9
9
less than Point
F
\mathrm{F}
F
. Where is
G
\mathrm{G}
G
located?
\newline
G
=
□
\mathrm{G}= \square
G
=
□
Get tutor help
\newline
Given
cot
A
=
−
5
171
\cot A=-\frac{5}{\sqrt{171}}
cot
A
=
−
171
5
and that angle
A
A
A
is in Quadrant IV, find the exact value of
sin
A
\sin A
sin
A
n simplest radical form using a rational denominator.
\newline
Answer____
Get tutor help
If
8
x
−
y
=
−
10
\mathbf{8 x}-\mathbf{y}=-\mathbf{1 0}
8x
−
y
=
−
10
is a true equation, what would be the value of
4
+
8
x
−
y
?
\mathbf{4}+\mathbf{8 x}-\mathbf{y} ?
4
+
8x
−
y
?
\newline
Answer:
Get tutor help
If
9
x
−
10
y
=
7
\mathbf{9 x}-\mathbf{1 0 y}=\mathbf{7}
9x
−
10y
=
7
and
−
x
−
9
y
=
6
-\mathbf{x}-\mathbf{9 y}=\mathbf{6}
−
x
−
9y
=
6
are true equations, what would be the value of
−
10
x
+
y
-\mathbf{1 0 x}+\mathbf{y}
−
10x
+
y
?
\newline
Answer:
Get tutor help
If
2
x
+
10
y
=
3
\mathbf{2 x}+\mathbf{1 0 y}=\mathbf{3}
2x
+
10y
=
3
and
−
5
x
−
8
y
=
7
-\mathbf{5 x}-\mathbf{8 y}=\mathbf{7}
−
5x
−
8y
=
7
are true equations, what would be the value of
7
x
+
18
y
\mathbf{7 x}+\mathbf{1 8 y}
7x
+
18y
?
\newline
Answer:
Get tutor help
For the following equation, evaluate
d
y
d
x
\frac{d y}{d x}
d
x
d
y
when
x
=
−
3
x=-3
x
=
−
3
.
\newline
y
=
3
x
2
+
3
y=3 x^{2}+3
y
=
3
x
2
+
3
\newline
Answer:
Get tutor help
The derivative of the function
f
f
f
is defined by
f
′
(
x
)
=
(
x
2
+
3
)
sin
(
3
x
)
f^{\prime}(x)=\left(x^{2}+3\right) \sin (3 x)
f
′
(
x
)
=
(
x
2
+
3
)
sin
(
3
x
)
. If
f
(
2
)
=
7
f(2)=7
f
(
2
)
=
7
, then use a calculator to find the value of
f
(
6
)
f(6)
f
(
6
)
to the nearest thousandth.
\newline
Answer:
Get tutor help
The derivative of the function
f
f
f
is defined by
f
′
(
x
)
=
(
x
3
−
2
)
cos
(
2
x
)
f^{\prime}(x)=\left(x^{3}-2\right) \cos (2 x)
f
′
(
x
)
=
(
x
3
−
2
)
cos
(
2
x
)
. If
f
(
6
)
=
6
f(6)=6
f
(
6
)
=
6
, then use a calculator to find the value of
f
(
−
1
)
f(-1)
f
(
−
1
)
to the nearest thousandth.
\newline
Answer:
Get tutor help
The derivative of the function
f
f
f
is defined by
f
′
(
x
)
=
x
3
sin
(
x
)
f^{\prime}(x)=x^{3} \sin (x)
f
′
(
x
)
=
x
3
sin
(
x
)
. If
f
(
4
)
=
−
7
f(4)=-7
f
(
4
)
=
−
7
, then use a calculator to find the value of
f
(
0
)
f(0)
f
(
0
)
to the nearest thousandth.
\newline
Answer:
Get tutor help
The derivative of the function
f
f
f
is defined by
f
′
(
x
)
=
x
2
−
5
x
−
sin
(
3
x
+
3
)
f^{\prime}(x)=x^{2}-5 x-\sin (3 x+3)
f
′
(
x
)
=
x
2
−
5
x
−
sin
(
3
x
+
3
)
. If
f
(
−
2
)
=
−
9
f(-2)=-9
f
(
−
2
)
=
−
9
, then use a calculator to find the value of
f
(
4
)
f(4)
f
(
4
)
to the nearest thousandth.
\newline
Answer:
Get tutor help
The derivative of the function
f
f
f
is defined by
f
′
(
x
)
=
(
x
3
+
3
x
)
cos
(
3
x
+
4
)
f^{\prime}(x)=\left(x^{3}+3 x\right) \cos (3 x+4)
f
′
(
x
)
=
(
x
3
+
3
x
)
cos
(
3
x
+
4
)
. If
f
(
3
)
=
−
4
f(3)=-4
f
(
3
)
=
−
4
, then use a calculator to find the value of
f
(
−
2
)
f(-2)
f
(
−
2
)
to the nearest thousandth.
\newline
Answer:
Get tutor help
1
2
Next