Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The derivative of the function 
f is defined by 
f^(')(x)=x^(2)-5x-sin(3x+3). If 
f(-2)=-9, then use a calculator to find the value of 
f(4) to the nearest thousandth.
Answer:

The derivative of the function f f is defined by f(x)=x25xsin(3x+3) f^{\prime}(x)=x^{2}-5 x-\sin (3 x+3) . If f(2)=9 f(-2)=-9 , then use a calculator to find the value of f(4) f(4) to the nearest thousandth.\newlineAnswer:

Full solution

Q. The derivative of the function f f is defined by f(x)=x25xsin(3x+3) f^{\prime}(x)=x^{2}-5 x-\sin (3 x+3) . If f(2)=9 f(-2)=-9 , then use a calculator to find the value of f(4) f(4) to the nearest thousandth.\newlineAnswer:
  1. Integrate f(x)f'(x): To find f(4)f(4), we need to integrate the derivative f(x)f'(x) to get the original function f(x)f(x). We will then use the initial condition f(2)=9f(-2) = -9 to find the constant of integration.\newlineIntegrate f(x)=x25xsin(3x+3)f'(x) = x^{2} - 5x - \sin(3x+3).\newlineThe integral of x2x^{2} is (1/3)x3(1/3)x^{3}, the integral of 5x-5x is (5/2)x2(-5/2)x^{2}, and the integral of f(4)f(4)00 is f(4)f(4)11 plus a constant f(4)f(4)22.\newlineSo, f(4)f(4)33.
  2. Use Initial Condition: Now we use the initial condition f(2)=9f(-2) = -9 to find the constant CC. Substitute x=2x = -2 into f(x)f(x) to get: 9=(1/3)(2)3(5/2)(2)2+(1/3)cos(3(2)+3)+C-9 = (1/3)(-2)^{3} - (5/2)(-2)^{2} + (1/3)\cos(3(-2)+3) + C. Calculate the values: 9=(1/3)(8)(5/2)(4)+(1/3)cos(3)+C-9 = (1/3)(-8) - (5/2)(4) + (1/3)\cos(-3) + C. 9=8/310+(1/3)cos(3)+C-9 = -8/3 - 10 + (1/3)\cos(-3) + C.
  3. Solve for Constant CC: Simplify the equation to solve for CC.
    9=8310+13cos(3)+C-9 = -\frac{8}{3} - 10 + \frac{1}{3}\cos(-3) + C.
    Multiply all terms by 33 to clear the fraction:
    27=830+cos(3)+3C-27 = -8 - 30 + \cos(-3) + 3C.
    27=38+cos(3)+3C-27 = -38 + \cos(-3) + 3C.
    Add 3838 to both sides:
    11=cos(3)+3C11 = \cos(-3) + 3C.
  4. Calculate cos(3)\cos(-3): Use a calculator to find the value of cos(3)\cos(-3) to the nearest thousandth.\newlinecos(3)0.990\cos(-3) \approx 0.990 (rounded to three decimal places).\newlineNow we have:\newline11=0.990+3C11 = 0.990 + 3C.
  5. Find Constant C: Solve for C.\newline110.990=3C11 - 0.990 = 3C.\newline10.010=3C10.010 = 3C.\newlineC=10.0103C = \frac{10.010}{3}.\newlineC3.337C \approx 3.337 (rounded to three decimal places).
  6. Substitute x=4x = 4: Now that we have the constant CC, we can write the original function f(x)f(x) as:\newlinef(x)=13x352x2+13cos(3x+3)+3.337.f(x) = \frac{1}{3}x^{3} - \frac{5}{2}x^{2} + \frac{1}{3}\cos(3x+3) + 3.337.\newlineTo find f(4)f(4), substitute x=4x = 4 into f(x)f(x):\newlinef(4)=13(4)352(4)2+13cos(3(4)+3)+3.337.f(4) = \frac{1}{3}(4)^{3} - \frac{5}{2}(4)^{2} + \frac{1}{3}\cos(3(4)+3) + 3.337.\newlineCalculate the values:\newlinef(4)=13(64)52(16)+13cos(15)+3.337.f(4) = \frac{1}{3}(64) - \frac{5}{2}(16) + \frac{1}{3}\cos(15) + 3.337.
  7. Calculate cos(15)\cos(15): Simplify the equation to find f(4)f(4).\newlinef(4)=64340+(13)cos(15)+3.337.f(4) = \frac{64}{3} - 40 + \left(\frac{1}{3}\right)\cos(15) + 3.337.\newlineUse a calculator to find the value of cos(15)\cos(15) to the nearest thousandth.\newlinecos(15)0.966\cos(15) \approx 0.966 (rounded to three decimal places).\newlineNow we have:\newlinef(4)=64340+(13)(0.966)+3.337.f(4) = \frac{64}{3} - 40 + \left(\frac{1}{3}\right)(0.966) + 3.337.
  8. Calculate f(4)f(4): Calculate the final value of f(4)f(4) to the nearest thousandth.f(4)=64340+0.322+3.337.f(4) = \frac{64}{3} - 40 + 0.322 + 3.337.f(4)=21.33340+0.322+3.337.f(4) = 21.333 - 40 + 0.322 + 3.337.f(4)=18.667+0.322+3.337.f(4) = -18.667 + 0.322 + 3.337.f(4)=18.345+3.337.f(4) = -18.345 + 3.337.f(4)=15.008.f(4) = -15.008.Round to the nearest thousandth:f(4)15.008.f(4) \approx -15.008.

More problems from Find trigonometric ratios using multiple identities